Algebra 1 : Functions and Lines

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #851 : Functions And Lines

Find the midpoint of the line segment with endpoints \(\displaystyle (1.6, 7.3)\) and \(\displaystyle ( -1.4, 4.7)\).

Possible Answers:

\(\displaystyle (-1.5,-6)\)

\(\displaystyle (1.5, 6)\)

\(\displaystyle \left ( 4.45, 1.65\right )\)

\(\displaystyle \left ( 6, 0.1\right )\)

\(\displaystyle (0.1, 6)\)

Correct answer:

\(\displaystyle (0.1, 6)\)

Explanation:

Use the midpoint formula:

 \(\displaystyle \left ( \frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}} \right )\)

Substitute:

\(\displaystyle \frac{x_{1}+x_{2}}{2} =\frac{1.6+(-1.4)}{2} = \frac{0.2}{2} = 0.1\)

\(\displaystyle \frac{y_{1}+y_{2}}{2}} \right = \frac{7.3+4.7)}{2}} = \frac{12}{2} = 6\)

The midpoint is \(\displaystyle (0.1, 6)\)

Example Question #852 : Functions And Lines

Find the midpoint of the line segment with endpoints \(\displaystyle \left ( \frac{1}{3}, \frac{5}{6} \right )\) and \(\displaystyle \left ( -\frac{5}{6},\frac{2}{3} \right )\).

Possible Answers:

\(\displaystyle \left ( -\frac{1 }{2}, \frac{3 }{2} \right )\)

\(\displaystyle \left ( \frac{7 }{12}, -\frac{1 }{12} \right )\)

\(\displaystyle \left ( \frac{1 }{4}, \frac{3 }{4} \right )\)

\(\displaystyle \left ( -\frac{7 }{12}, \frac{1 }{12} \right )\)

\(\displaystyle \left ( -\frac{1 }{4}, \frac{3 }{4} \right )\)

Correct answer:

\(\displaystyle \left ( -\frac{1 }{4}, \frac{3 }{4} \right )\)

Explanation:

Use the midpoint formula:

 \(\displaystyle \left ( \frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}} \right )\)

Substitute:

\(\displaystyle \frac{x_{1}+x_{2}}{2} = \frac{ \frac{1}{3} + \left (-\frac{5}{6} \right )}{2}= \frac{ \frac{2}{6} - \frac{5}{6} }{2}= \frac{-\frac{3}{6}}{2}= \frac{-\frac{1}{2}}{2} = -\frac{1}{2} \div 2 = -\frac{1}{2} \cdot\frac{1}{2} =-\frac{1}{4}\)

 

\(\displaystyle \frac{y_{1}+y_{2}}{2} = \frac{ \frac{5}{6} + \frac{2}{3}}{2} = \frac{ \frac{5}{6} + \frac{4}{6}}{2} = \frac{ \frac{9}{6} }{2}= \frac{ \frac{3}{2} }{2} = \frac{3}{2} \div 2 = \frac{3}{2} \cdot \frac{1}{2} = \frac{3}{4}\)

The midpoint is \(\displaystyle \left ( -\frac{1 }{4}, \frac{3 }{4} \right )\).

Example Question #853 : Functions And Lines

What is the midpoint of a line with endpoints of \(\displaystyle (9,-3)\) and \(\displaystyle (-1,5)\)?

Possible Answers:

\(\displaystyle (4,1)\)

\(\displaystyle (-1,4)\)

\(\displaystyle (4,-1)\)

\(\displaystyle (-4,-1)\)

\(\displaystyle (1,4)\)

Correct answer:

\(\displaystyle (4,1)\)

Explanation:

To find the midpoint, you can use the midpoint formula: \(\displaystyle (\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2})\).

Plug in \(\displaystyle (9,-3)\) and \(\displaystyle (-1, 5)\) into the formula: \(\displaystyle (\frac{9+-1}{2},\frac{-3+5}{2})\) to get \(\displaystyle (4,1)\).

Example Question #1 : Midpoint Formula

Find the midpoint of the line segment with endpoints \(\displaystyle (3.6, 9.1)\) and \(\displaystyle (7.2, -1.5)\).

Possible Answers:

\(\displaystyle (3.8, 5.4)\)

\(\displaystyle \left (-1.8, 5.3 \right )\)

\(\displaystyle \left (-1.8, 5.3 \right )\)

\(\displaystyle \left (6.35, 2.85 \right )\)

\(\displaystyle \left (1.8, -5.3 \right )\)

\(\displaystyle (5.4, 3.8)\)

\(\displaystyle \left (6.35, 2.85 \right )\)

\(\displaystyle \left (1.8, -5.3 \right )\)

Correct answer:

\(\displaystyle (5.4, 3.8)\)

Explanation:

Use the midpoint formula:

 \(\displaystyle \left ( \frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}} \right )\)

Substitute:

\(\displaystyle \frac{x_{1}+x_{2}}{2} =\frac{3.6+7.2}{2} = \frac{10.8}{2} = 5.4\)

\(\displaystyle \frac{y_{1}+y_{2}}{2}} \right = \frac{9.1+(-1.5)}{2}} = \frac{7.6}{2} = 3.8\)

The midpoint is \(\displaystyle (5.4, 3.8)\)

Example Question #854 : Functions And Lines

What is the midpoint of a line with endpoints (2,5) and (18,-9)?

Possible Answers:

\(\displaystyle (20,-4)\)

\(\displaystyle (6,0)\)

\(\displaystyle (-2,10)\)

\(\displaystyle (-4,20)\)

\(\displaystyle (10,-2)\)

Correct answer:

\(\displaystyle (10,-2)\)

Explanation:

To find the midpoint of the line, plug the endpoints into the distance formula: \(\displaystyle (\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2})\). This will give you \(\displaystyle (\frac{2+18}{2},\frac{5+-9}{2})\), or a midpoint of \(\displaystyle (10,-2)\).

Example Question #855 : Functions And Lines

What is the midpoint of a line with endpoints of (12,3) and (28,9)?

Possible Answers:

\(\displaystyle (12, 8)\)

\(\displaystyle (20,3)\)

\(\displaystyle (20,6)\)

\(\displaystyle (8,3)\)

\(\displaystyle (8,6)\)

Correct answer:

\(\displaystyle (20,6)\)

Explanation:

To find the midpoint of a line, plug the endpoints into the midpoint formula: 

\(\displaystyle \left(\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2}\right)\)

This gives you 

\(\displaystyle \left(\frac{12+28}{2},\frac{3+9}{2}\right)\)

or 

\(\displaystyle (20,6)\)

Example Question #21 : How To Find The Midpoint Of A Line Segment

What is the midpoint of a line with endpoints of \(\displaystyle (8,-4)\) and \(\displaystyle (20,2)\)?

Possible Answers:

\(\displaystyle (5,-2)\)

\(\displaystyle (14,-1)\)

\(\displaystyle (6,10)\)

\(\displaystyle (28,-2)\)

\(\displaystyle (10,4)\)

Correct answer:

\(\displaystyle (14,-1)\)

Explanation:

To find the midpoint of the line, plug the endpoints into the midpoint formula, which is 

\(\displaystyle \left(\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2}\right)\)

Doing this gives you 

\(\displaystyle \left(\frac{8+20}{2},\frac{-4+2}{2}\right)\)

or 

\(\displaystyle (14,-1)\)

Example Question #22 : How To Find The Midpoint Of A Line Segment

What is the midpoint of a line segment with endpoints of \(\displaystyle (-7,4)\) and \(\displaystyle (3,16)\)?

Possible Answers:

\(\displaystyle (-2,10)\)

\(\displaystyle (-4,20)\)

\(\displaystyle (20,-4)\)

\(\displaystyle (-1,5)\)

\(\displaystyle (10,-2)\)

Correct answer:

\(\displaystyle (-2,10)\)

Explanation:

To find the midpoint of the line segment, plug in the endpoints to the midpoint formula, which is 

\(\displaystyle \left(\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2}\right)\)

This gives you 

\(\displaystyle \left(\frac{-7+3}{2},\frac{4+16}{2}\right)\)

which equals

\(\displaystyle (-2,10)\)

Example Question #32 : Midpoint Formula

What is the midpoint for the line segment between the points \(\displaystyle \left ( -3,7 \right )\) and \(\displaystyle \left ( 5,10 \right )\ ?\)

Possible Answers:

\(\displaystyle \left ( 4,8 \right )\)

\(\displaystyle \left ( -4,\ -1.5 \right )\)

\(\displaystyle \left ( 3.5,\ 6 \right )\)

\(\displaystyle \left ( 1,\ 8.5 \right )\)

\(\displaystyle \left ( 0,8 \right )\)

Correct answer:

\(\displaystyle \left ( 1,\ 8.5 \right )\)

Explanation:

To find the midpoint, use the midpoint formula:

\(\displaystyle Midpoint = (\frac{x_{1} + x_{2}}{2}, \frac{y_{1}+y_{2}}{2})\)

For this problem, this would be:

\(\displaystyle (\frac{-3+5}{2}, \frac{7+10}{2}) = (1, 8.5)\)

Example Question #23 : How To Find The Midpoint Of A Line Segment

What is the midpoint of the line segment between points \(\displaystyle (1, 8)\) and \(\displaystyle (-7, 10)\)?

Possible Answers:

\(\displaystyle (-3, 9)\)

\(\displaystyle (-3,-9)\)

None of the other answers are correct.

\(\displaystyle (3, -9)\)

\(\displaystyle (3,9)\)

Correct answer:

\(\displaystyle (-3, 9)\)

Explanation:

\(\displaystyle (\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})\) is the midpoint formula and will give the midpoint coordinates.

Plug in the numbers from the given ordered pairs:

\(\displaystyle (\frac{1+(-7)}{2},\frac{8+10}{2})\)

\(\displaystyle (\frac{-6}{2},\frac{18}{2})\)

\(\displaystyle (-3,9)\)

Learning Tools by Varsity Tutors