Algebra II : Algebra II

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #925 : Mathematical Relationships And Basic Graphs

Multiply the following exponents:  \displaystyle 4^{30}\cdot 16^{12}

Possible Answers:

\displaystyle 4^{132}

\displaystyle 20^{42}

\displaystyle 4^{54}

\displaystyle 64^{18}

Correct answer:

\displaystyle 4^{54}

Explanation:

Notice that we can rewrite the second term in terms of the base of four.  Sixteen is equal to four squared.

\displaystyle 16= 4^2

We can replace this term with 16 in order to multiply, and then add the exponents.

\displaystyle 4^{30}\cdot 16^{12} =4^{30}\cdot 4^{2(12)} =4^{30}\cdot 4^{24}

According to the rule of exponents, whenever powers of a similar base are multiplied, the exponents can be added.

\displaystyle x^A \cdot x^B = x^{( A + B )}

The answer is:  \displaystyle 4^{54}

Example Question #124 : Multiplying And Dividing Exponents

Divide:   \displaystyle \frac{4^{34}}{4^{36}}

Possible Answers:

\displaystyle 1

\displaystyle 8

\displaystyle 16

\displaystyle 4^{70}

\displaystyle \frac{1}{16}

Correct answer:

\displaystyle \frac{1}{16}

Explanation:

When dividing powers of a similar base, the exponents can be subtracted.

\displaystyle \frac{4^{34}}{4^{36}} = 4^{34-36}=4^{-2}

Simplify the negative exponent.

\displaystyle x^{-n} = \frac{1}{x^n}

\displaystyle 4^{-2} = \frac{1}{4^2} = \frac{1}{16}

The answer is:  \displaystyle \frac{1}{16}

Example Question #125 : Multiplying And Dividing Exponents

Evaluate:  \displaystyle \frac{3^{15}}{27^{18}}

Possible Answers:

\displaystyle \frac{1}{9^3}

\displaystyle \frac{1}{3^9}

\displaystyle \frac{1}{9^{39}}

\displaystyle \frac{1}{3^{39}}

\displaystyle \frac{1}{9^{117}}

Correct answer:

\displaystyle \frac{1}{3^{39}}

Explanation:

In order to simplify this, we will need to rewrite the base 27 as a common base of three in order to be able to subtract the exponents.

\displaystyle 27 = 3^3

Rewrite the fraction.

\displaystyle \frac{3^{15}}{27^{18}} = \frac{3^{15}}{3^{3(18)}} = \frac{3^{15}}{3^{54}}

Subtract the exponents.

\displaystyle 3^{15-54} = 3^{-39}=\frac{1}{3^{39}}

The answer is:  \displaystyle \frac{1}{3^{39}}

Example Question #3591 : Algebra Ii

Divide:  \displaystyle \frac{3^{260}}{9^{132}}

Possible Answers:

\displaystyle 36

\displaystyle \frac{1}{729}

\displaystyle \frac{1}{36}

\displaystyle \frac{1}{81}

\displaystyle \frac{1}{27}

Correct answer:

\displaystyle \frac{1}{81}

Explanation:

In order to subtract the exponents, we will need similar bases.  

Rewrite the nine as a base of three.  Nine is equivalent to \displaystyle 3^2.

The expression becomes:  

\displaystyle \frac{3^{260}}{9^{132}}= \frac{3^{260}}{3^{2(132)}}=\frac{3^{260}}{3^{264}}

Now that the bases are equal, we can subtract the exponents and simplify.

\displaystyle 3^{260-264} = 3^{-4}=\frac{1}{3^4} = \frac{1}{81}

The answer is:  \displaystyle \frac{1}{81}

Example Question #3592 : Algebra Ii

Simplify:  \displaystyle 2^{18}\cdot 8^{500}

Possible Answers:

\displaystyle 2^{1518}

\displaystyle 8^{4500}

\displaystyle 16^{518}

\displaystyle 16^{9000}

Correct answer:

\displaystyle 2^{1518}

Explanation:

In order to simplify this, we will need to convert the base eight to base two.

\displaystyle 8=2^3

Rewrite the second term.

\displaystyle 2^{18}\cdot 8^{500} = 2^{18}\cdot (2^3)^{500} = 2^{18}\cdot2^{1500}

Because the bases are now similar, we can add the exponents.

\displaystyle 2^{18}\cdot2^{1500} = 2^{1500+18} = 2^{1518}

The answer is:  \displaystyle 2^{1518}

Example Question #131 : Simplifying Exponents

Divide the exponents:  \displaystyle \frac{8^{100}}{16^{350}}

Possible Answers:

\displaystyle \frac{1}{2^{1100}}

\displaystyle \frac{1}{4^{450}}

\displaystyle \frac{1}{16^{250}}

\displaystyle \frac{1}{2^{600}}

\displaystyle \frac{1}{2^{250}}

Correct answer:

\displaystyle \frac{1}{2^{1100}}

Explanation:

Rewrite the numerator and denominator using the base power of two.

\displaystyle \frac{8^{100}}{16^{350}} = \frac{2^{3(100)}}{2^{4(350)}}

Use the product rule of exponents to simplify the powers.

\displaystyle \frac{2^{300}}{2^{1400}}

Now that the bases are similar, the exponents on the numerator and denominator can be subtracted.

\displaystyle \frac{2^{300}}{2^{1400}} = 2^{300-1400} = 2^{-1100} = \frac{1}{2^{1100}}

The answer is:  \displaystyle \frac{1}{2^{1100}}

Example Question #132 : Simplifying Exponents

Multiply the terms:  \displaystyle (2^{42})^2\cdot 2^{24}

Possible Answers:

\displaystyle 2^{106}

\displaystyle 4^{108}

\displaystyle 2^{68}

\displaystyle 2^{108}

\displaystyle 4^{68}

Correct answer:

\displaystyle 2^{108}

Explanation:

Use the power rule of exponents to simplify.  Multiply the power of 42 with the power of two outside the parentheses.

\displaystyle (2^{42})^2\cdot 2^{24} = 2^{84}\cdot 2^{24}

When the powers of the same bases are multiplied, the powers can be added.

\displaystyle 2^{84+24} = 2^{108}

The answer is:  \displaystyle 2^{108}

Example Question #133 : Simplifying Exponents

Divide:  \displaystyle \frac{8^{200}}{4^{100}}

Possible Answers:

\displaystyle 2^{400}

\displaystyle 4^{200}

\displaystyle 2^{200}

\displaystyle 2^{50}

\displaystyle 2^{250}

Correct answer:

\displaystyle 2^{400}

Explanation:

In order to be able to subtract the exponents, we will need to have similar bases in the numerator and denominator.

\displaystyle 8=2^3

\displaystyle 4=2^2

Replace the values and simplify.

\displaystyle \frac{8^{200}}{4^{100}} = \frac{2^{3(200)}}{2^{2(100)}} = \frac{2^{600}}{2^{200}}

Subtract the exponents.

The answer is:  \displaystyle 2^{400}

Example Question #134 : Simplifying Exponents

Divide:  \displaystyle \frac{25^{30}}{5^{90}}

Possible Answers:

\displaystyle 5^{30}

\displaystyle \frac{1}{5^{60}}

\displaystyle \frac{1}{5^{30}}

\displaystyle \frac{1}{25^{3}}

\displaystyle 25^{3}

Correct answer:

\displaystyle \frac{1}{5^{30}}

Explanation:

Change the base of the numerator so that it matches the denominator.

\displaystyle 25= 5^2

We can rewrite the numerator as five squared.

\displaystyle \frac{25^{30}}{5^{90}} = \frac{(5^2)^{30}}{5^{90}}

Use the product rule of exponents to simplify the numerator.

\displaystyle \frac{(5^2)^{30}}{5^{90}} = \frac{5^{60}}{5^{90}}

Subtract the powers.

\displaystyle 5^{60-90} = 5^{-30}

Rewrite the negative exponent as a fraction.

The answer is:  \displaystyle \frac{1}{5^{30}}

Example Question #135 : Simplifying Exponents

Simplify:   \displaystyle 125(5^{50})(25^{100})

Possible Answers:

\displaystyle 5^{253}

\displaystyle 25^{153}

\displaystyle 125^{50}

\displaystyle 5^{30000}

Correct answer:

\displaystyle 5^{253}

Explanation:

Rewrite each term as a base of five.

\displaystyle 125 = 5^3

\displaystyle 5=5^1

\displaystyle 25=5^2

Replace the terms.

\displaystyle 125(5^{50})(25^{100}) = 5^3(5^{1(50)})(5^{2(100)})= (5^3)(5^{50})(5^{200})

Now that the similar bases with exponents are multiplied, the powers can be added.

\displaystyle (5^3)(5^{50})(5^{200}) = (5^{3+50+200}) = 5^{253}

The answer is:  \displaystyle 5^{253}

Learning Tools by Varsity Tutors