Algebra II : Algebra II

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3601 : Algebra Ii

Simplify: \displaystyle x^5*x^6

Possible Answers:

\displaystyle x^{11}

\displaystyle 2x^{30}

\displaystyle x^{12}

\displaystyle 2x^{11}

\displaystyle x^{30}

Correct answer:

\displaystyle x^{11}

Explanation:

When multiplying exponents with the same base, we just keep the base the same and add the exponents.

\displaystyle x^5*x^6=x^{5+6}=x^{11}

Example Question #132 : Simplifying Exponents

Simplify: \displaystyle x^{12}*x^{-8}

Possible Answers:

\displaystyle 2x^{4}

\displaystyle x^{-4}

\displaystyle x^{-2}

\displaystyle x^4

\displaystyle x^{-96}

Correct answer:

\displaystyle x^4

Explanation:

When multiplying exponents with the same base, we just keep the base the same and add the exponents.

\displaystyle x^{12}*x^{-8}=x^{12+(-8)}=x^4

Example Question #131 : Simplifying Exponents

Simplify: \displaystyle (\frac{x}{y})^4*(\frac{y^2}{x^{-3}})^2

Possible Answers:

\displaystyle \frac{x^7}{y}

\displaystyle x^{10}y^3

\displaystyle x^{10}

\displaystyle \frac{x}{y}

\displaystyle \frac{x^7}{y^3}

Correct answer:

\displaystyle x^{10}

Explanation:

We apply the exponents first before simplifying the fractions.

\displaystyle (\frac{x}{y})^4*(\frac{y^2}{x^{-3}})^2=\frac{x^4}{y^4}*\frac{y^4}{x^{-6}} The \displaystyle y^4 cancels and we have \displaystyle \frac{x^4}{x^{-6}}. When dividing exponents, we subtract the exponents and keep the base the same.

\displaystyle \frac{x^4}{x^{-6}}=x^{4-(-6)}=x^{10}

Example Question #3602 : Algebra Ii

Simplify: \displaystyle \frac{x^7}{x^8}

 

Possible Answers:

\displaystyle x^{15}

\displaystyle x

\displaystyle -\frac{1}{x}

\displaystyle \frac{1}{x^2}

\displaystyle \frac{1}{x}

Correct answer:

\displaystyle \frac{1}{x}

Explanation:

When dividing exponents, we subtract the exponents and keep the base the same.

\displaystyle \frac{x^7}{x^8}=x^{7-8}=x^{-1} We know with negative exponents, it's expressed as one over the positive exponent.

\displaystyle x^{-1}=\frac{1}{x}

Example Question #472 : Exponents

Simplify: \displaystyle x^5*(\frac{5}{x^4})^2*\frac{x^8}{10}

Possible Answers:

\displaystyle \frac{5x^4}{2}

\displaystyle \frac{x^9}{2}

\displaystyle x^5

\displaystyle \frac{5x^9}{2}

\displaystyle \frac{5x^5}{2}

Correct answer:

\displaystyle \frac{5x^5}{2}

Explanation:

Let's apply the exponents to the parentheses first and then simplify.

\displaystyle x^5*(\frac{5}{x^4})^2*\frac{x^8}{10}=x^5*\frac{25}{x^8}*\frac{x^8}{10} The \displaystyle x^8 cancels and the numbers can be reduced by \displaystyle 5

We finally get: \displaystyle \frac{5x^5}{2}.

Example Question #3603 : Algebra Ii

Simplify and express as exponents: \displaystyle \frac{x^4}{y^7}*x^{-8}

Possible Answers:

\displaystyle (xy)^4

\displaystyle x^{-4}y^{-7}

\displaystyle x^{-4}y^7

\displaystyle (xy)^7

\displaystyle x^4y^7

Correct answer:

\displaystyle x^{-4}y^{-7}

Explanation:

Let's rewrite this as just exponents. Remember we can breakup \displaystyle \frac{x^4}{y^7}=x^4*\frac{1}{y^7}.\displaystyle \frac{x^4}{y^7}*x^{-8}=\frac{1}{y^7}*x^4*x^{-8}=y^{-7}*x^{-4}

Example Question #3604 : Algebra Ii

Simplify: \displaystyle \frac{5^{2x}}{5^{2x+4}}

Possible Answers:

\displaystyle -\frac{1}{5^4}

\displaystyle -5^4

\displaystyle 5^4

\displaystyle 1

\displaystyle \frac{1}{5^4}

Correct answer:

\displaystyle \frac{1}{5^4}

Explanation:

When dividing exponents, we subtract the exponents and keep the base the same.

\displaystyle \frac{5^{2x}}{5^{2x+4}}=5^{2x-(2x+4)}=5^{2x-2x-4}=5^{-4}=\frac{1}{5^4} We know with negative exponents, it's expressed as one over the positive exponent.

Example Question #3605 : Algebra Ii

Simplify: \displaystyle \frac{7^{8x+4}}{7^{7x-2}}

Possible Answers:

\displaystyle \frac{1}{7^{x+2}}

\displaystyle 7^{x+6}

\displaystyle \frac{1}{7^{x+6}}

\displaystyle 7^{x+2}

\displaystyle -\frac{1}{7^{x+6}}

Correct answer:

\displaystyle 7^{x+6}

Explanation:

When dividing exponents, we subtract the exponents and keep the base the same.

\displaystyle \frac{7^{8x+4}}{7^{7x-2}}=7^{8x+4-(7x-2)}=7^{8x+4-7x+2}=7^{x+6}

Example Question #476 : Exponents

Simplify: \displaystyle \frac{a+b}{a^2+2ab+b^2}

Possible Answers:

\displaystyle a+b

\displaystyle a-b

\displaystyle \frac{1}{2ab}

\displaystyle \frac{1}{a+ab+b}

\displaystyle \frac{1}{a+b}

Correct answer:

\displaystyle \frac{1}{a+b}

Explanation:

Although it seems like we can't simplify anything, we do know that \displaystyle a^2+2ab+b^2=(a+b)^2. Therefore we have:

\displaystyle \frac{a+b}{a^2+2ab+b^2}=\frac{a+b}{(a+b)^2}. Now we can divide the exponents to get \displaystyle (a+b)^{-1}=\frac{1}{a+b}

Example Question #477 : Exponents

Simplify: \displaystyle (\frac{x}{y})^{7n}*(\frac{x}{y^{-1}})^{2n}*\frac{y^{5n}}{x^{5n+2}}

Possible Answers:

\displaystyle x^{4n+2}

\displaystyle \frac{x^{4n}}{y^{2n}}

\displaystyle \frac{x^n}{y^n}

\displaystyle \frac{x^{4n-2}}{y^n}

\displaystyle x^{4n-2}

Correct answer:

\displaystyle x^{4n-2}

Explanation:

Let's apply the exponential operation before we simplify.

\displaystyle (\frac{x}{y})^{7n}*(\frac{x}{y^{-1}})^{2n}*\frac{y^{5n}}{x^{5n+2}}=\frac{x^{7n}}{y^{7n}}*x^{2n}y^{2n}*\frac{y^{5n}}{x^{5n+2}} In the numerator, the \displaystyle y^{2n}, y^{5n} become \displaystyle y^{7n} and cancels with the denominator in the left fraction.

We now have: \displaystyle x^{7n}*x^{2n}*\frac{1}{x^{5n+2}}. By combining the top and applying the division rule of exponents, we get: 

\displaystyle x^{7n}*x^{2n}*\frac{1}{x^{5n+2}}=\frac{x^{9n}}{x^{5n+2}}=x^{9n-(5n+2)}=x^{9n-5n-2}=x^{4n-2}

Learning Tools by Varsity Tutors