Calculus 2 : Finding Integrals

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #531 : Integrals

Possible Answers:

Correct answer:

Explanation:

First, take the 4 outside of the integral sign and rewrite the radical as a fractional exponent. It's easier to visualize that when integrating:

Now integrate. Remember to raise the exponent by 1 and also put that result on the denominator:

Simplify and multiply by the 4 that you took out:

Now evaluate at 2 and then 0. Subtract the results:

Example Question #172 : Definite Integrals

Possible Answers:

Correct answer:

Explanation:

First, integrate. Remember to add one to the exponent and also put that result on the denominator:

Now, evaluate at 2 and then 1. Subtract the results:

Example Question #171 : Definite Integrals

Possible Answers:

Correct answer:

Explanation:

First, integrate. Remember to raise the exponent by 1 and also put that result on the denominator:

Now, evaluate at 4 and then 1. Subtract the results:

Simplify to get your answer:

Example Question #175 : Definite Integrals

Possible Answers:

Correct answer:

Explanation:

First, integrate. Remember to raise the exponent by 1 and also put that result on the denominator:

Now evaluate at 4 and then 2. Subtract the results:

Simplify to get your answer:

Example Question #542 : Integrals

Solve the definite integral by using u-substitution.

Possible Answers:

Correct answer:

Explanation:

So first things first, we identify what our u should be. If we look at this for chain rule our inside function would be the  in the . Therefore we use this as our u. 

So we start with our u.

Next we derive.

Solve for dx.

Substitute it back in.

Simplify. If all the xs don't cross out, we have done something wrong.

Integrate.

Plug in the original.

Plug in values and substract

Example Question #181 : Definite Integrals

Evaluate.

Possible Answers:

Answer not listed.

Correct answer:

Answer not listed.

Explanation:

In order to evaluate this integral, first find the antiderivative of 

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative: 

Example Question #544 : Integrals

Evaluate.

Possible Answers:

Answer not listed.

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative: 

Example Question #545 : Integrals

Evaluate.

Possible Answers:

Answer not listed.

Correct answer:

Answer not listed.

Explanation:

In order to evaluate this integral, first find the antiderivative of 

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative: 

Example Question #546 : Integrals

Evaluate.

Possible Answers:

Answer not listed.

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative: 

Example Question #547 : Integrals

Possible Answers:

Correct answer:

Explanation:

First, integrate. Remember to raise the exponent by 1 and also put that result on the denominator:

Now, evaluate at 2 and then 0. Subtract the results:

Simplify to get your answer:

Learning Tools by Varsity Tutors