Calculus 2 : Integrals

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Volume Of Cross Sections And Area Of Region

A man fills up a cup of water by leaving it outside during a rainstorm. The rate at which the height of the cup changes is equal to \displaystyle \small 5t^{1/2}. What is the height of water at \displaystyle \small t=9? Assume the cup is empty at \displaystyle {}\small t=0.

Possible Answers:

\displaystyle \small 270

\displaystyle \small 90

\displaystyle \small \frac{5}{6}

\displaystyle \small 27

\displaystyle \small 15

Correct answer:

\displaystyle \small 90

Explanation:

The rate at which the height changes is \displaystyle \small \frac{\mathrm{d} h}{\mathrm{d} t}, which means \displaystyle \small \small \frac{\mathrm{d} h}{\mathrm{d} t}=5t^{1/2}.

To find the height after nine seconds, we need to integrate to get \displaystyle {}\small h(t).

We can multiply both sides by \displaystyle \small dt to get \displaystyle \small dh=5t^{1/2}dt and then integrate both sides.

This gives us 

\displaystyle \small h=\frac{10t^{3/2}}{3}+c.

Since the cup is empty at \displaystyle \small t=0, h(0)=0, so \displaystyle \small c=0.

This means \displaystyle \small \small h(9)=10(9)^{3/2}/3=90. No units were given in the problem, so leaving the answer unitless is acceptable.

Example Question #5 : Volume Of Cross Sections And Area Of Region

Approximate the volume of a solid in the first quadrant revolved about the y-axis and bounded by the functions:  \displaystyle y=9x and \displaystyle y=x^3.  Round the volume to the nearest integer.

Possible Answers:

\displaystyle 11

\displaystyle 13

\displaystyle 8

\displaystyle 10

\displaystyle 15

Correct answer:

\displaystyle 11

Explanation:

Write the washer's method.

\displaystyle V=\int_{a}^{b}\pi[R(y)^2-r(y)^2]\:dy

Set the equations equal to each other to determine the bounds.

\displaystyle 9x=x^3

\displaystyle 9=x^2

\displaystyle x=3

The bounds are from 0 to 3.

Determine the big and small radius.  Rewrite the equations so that they are in terms of y.

\displaystyle R(y)= \sqrt[3]{y}

\displaystyle r(y)=\frac{y}{9}

Set up the integral and solve for the volume.

\displaystyle V=\int_{0}^{3}\pi[(\sqrt[3]{y})^2-(\frac{y}{9})^2]\:dy

\displaystyle V=\int_{0}^{3}\pi[y^{\frac{2}{3}}-\frac{y^2}{81}]\:dy=\pi[\frac{3}{5}y^\frac{5}{3}-\frac{y^3}{243}]_{0}^{3}=11.41353

The volume to the nearest integer is:  \displaystyle 11

Example Question #1 : Volume Of Cross Sections And Area Of Region

Determine the volume of a solid created by rotating the curve \displaystyle y=\sqrt[3]{x} and the line \displaystyle x=1 by revolving around the \displaystyle x-axis.

Possible Answers:

\displaystyle \frac{2}{5}\pi

\displaystyle \frac{1}{5}\pi

\displaystyle \frac{3}{5}\pi

\displaystyle \frac{8}{5}\pi

\displaystyle \frac{12}{5}\pi

Correct answer:

\displaystyle \frac{3}{5}\pi

Explanation:

Write the volume formula for cylindrical shells.

The shell radius is \displaystyle y.

The shell height is the function in terms of \displaystyle y.  Rewrite that equation.

\displaystyle y=\sqrt[3]{x}

\displaystyle x=y^3

The bounds lie on the y-axis since the thickness variable is \displaystyle dy.  This is from 0 to 1, since the intersection of the line \displaystyle x=1 and \displaystyle y=\sqrt[3]{x} is at \displaystyle (1,1).  

Substitute all the values and solve for the volume.

\displaystyle V=\int_{0}^{1}2\pi (y)(1-y^3) dy=\int_{0}^{1}2\pi (y-y^4)dy

\displaystyle V=2\pi \int_{0}^{1}(y-y^4)dy= 2\pi \left[\frac{y^2}{2}-\frac{y^5}{5}\right]_{0}^{1}= 2\pi\left[\frac{1}{2}-\frac{1}{5}\right]= \frac{3}{5}\pi

Example Question #2 : Volume Of Cross Sections And Area Of Region

What is the volume of the solid formed when the line \displaystyle y=\sqrt{x} is rotated around the \displaystyle y-axis from \displaystyle x=4 to \displaystyle x = 9?

Possible Answers:

\displaystyle 1

\displaystyle \frac{211\pi}{5}

\displaystyle 36\pi

\displaystyle \frac{21\pi}{2}

Correct answer:

\displaystyle \frac{211\pi}{5}

Explanation:

To rotate a curve around the y-axis, first convert the function so that y is the independent variable by solving \displaystyle y=\sqrt{x} for x. This leads to the function \displaystyle x=y^2

We'll also need to convert the endpoints of the interval to y-values. Note that when \displaystyle x=4, \ y=2, and when \displaystyle x = 9, y = 3. Therefore, the the interval being rotated is from \displaystyle y=2\ to\ y=3.

The disk method is best in this case. The general formula for the disk method is 

\displaystyle V=\pi\int_{a}^{b}f^2(x)dx, where V is volume, \displaystyle a\ and\ b are the endpoints of the interval, and \displaystyle f(x) the function being rotated. 

 

Substuting the function and endpoints from the problem at hand leads to the integral

\displaystyle V=\pi\int_{2}^{3}(y^2)^2dy=\pi\int_{2}^{3}y^4dy.

To evaluate this integral, you must know the power rule. Recall that the power rule is 

\displaystyle \int{y^ndy}=\frac{y^{n+1}}{n+1}+c

\displaystyle \pi\int_{2}^{3}y^4dy=\pi[\frac{y^5}{5}]_{2}^{3}

\displaystyle =\pi\left[\frac{3^5}{5}-\frac{2^5}{5}\right]=\pi\left[\frac{243}{5}-\frac{32}{5}\right]

\displaystyle =\frac{211\pi}{5}.

Example Question #3 : Volume Of Cross Sections And Area Of Region

Find the volume of the solid generated when the function 

 \displaystyle f(x)=x

is revolved around the x-axis on the interval \displaystyle [0,8].

Hint: Use the method of cylindrical disks.

Possible Answers:

\displaystyle V=\frac{400\pi}{3} units cubed

\displaystyle V=215\pi units cubed

\displaystyle V=\frac{625\pi}{3} units cubed

\displaystyle V=\frac{512\pi}{3} units cubed

Correct answer:

\displaystyle V=\frac{512\pi}{3} units cubed

Explanation:

The formula for the volume is given as

\displaystyle V=\pi \int_{a}^{b} r^2 \, dx

where \displaystyle r=f(x) and the bounds on the integral come from the interval \displaystyle [a,b].

As such, 

\displaystyle V=\pi \int_{0}^{8} x^2 \, dx

When taking the integral, we will use the inverse power rule which states

\displaystyle \int x^n=\frac{x^{n+1}}{n+1}

Applying this rule we get

\displaystyle \pi \int_{0}^{8} x^2 \, dx=\pi \left(\frac{x^3}{3}\right) \left.\begin{matrix} \\ \end{matrix}\right|_{0}^{8}

And by the corollary of the First Fundamental Theorem of Calculus

\displaystyle \pi \left(\frac{x^3}{3}\right) \left.\begin{matrix} \\ \end{matrix}\right|_{0}^{8}=\pi \left(\left[\frac{8^3}{3}\right]-\left[\frac{0^3}{3}\right]\right)

\displaystyle =\frac{512\pi}{3}

As such,

\displaystyle V=\frac{512\pi}{3} units cubed

Example Question #1 : Volume Of A Solid

Find the volume V of a solid whose cross section at x is a quarter circle with radius 2x on the interval [0, 3].

Possible Answers:

\displaystyle V=\frac{9}{2}\pi

\displaystyle V=9\pi

\displaystyle V=18\pi

\displaystyle V=\frac{9}{4}\pi

Correct answer:

\displaystyle V=9\pi

Explanation:

To determine the volume of a solid with defined cross sectional areas, the equation

\displaystyle V=\int_{a}^{b}A(x)dx

where \displaystyle A(x) is the cross sectional area at a given x, and the volume exists on the interval \displaystyle a\leq x \leq b.  

Because the cross sectional area is a quarter of a circle with a radius of 2x, we find

\displaystyle A(x)=\frac{1}{4} \pi r^{2}=\frac{1}{4} \pi (2x)^{2}=\pi x^{2}

The volume is then found with

\displaystyle V=\int_{0}^{3}\pi x^{2}dx=\frac{1}{3}\pi x^{3}\left.\begin{matrix} \\ \end{matrix}\right|\begin{matrix} \\ \end{matrix}^{3}_{0}=9\pi

Example Question #10 : Volume Of A Solid

Let R be the region between the graph of \displaystyle f(x)=(1-\cos^{2}x)^{1/4} and the x-axis on the interval \displaystyle 0\leq x \leq \pi.  Find the volume V of the solid obtained by revolving R about the x-axis.

Possible Answers:

\displaystyle V=\frac{\pi}{2}

\displaystyle V=2\pi

\displaystyle V=0

\displaystyle V=\pi

\displaystyle V=4\pi

Correct answer:

\displaystyle V=2\pi

Explanation:

The volume of solid region rotated around the x-axis such as the one in this problem can be found by summing the area of discs, using the formula :

\displaystyle V=\int_{a}^{b} \pi [f(x)]^{2}dx

where f(x) gives the radius of each disk.  Applying the equation for this problem:

\displaystyle V=\int_{0}^{\pi}\pi [(1-\cos ^{2}x)^{1/4}]^{2}dx=\int_{0}^{\pi}\pi (\sin ^{2}x)^{1/2}dx=\int_{0}^{\pi}\pi \sin (x) dx

\displaystyle V=-\pi\cos(x)\left.\begin{matrix} \\ \end{matrix}\right|^{\pi}_{0}=2\pi

Example Question #121 : Integral Applications

Let R be the region between f(x) and g(x) on the given interval.  FInd the volume V obtained by revolving R around the x-axis.

\displaystyle f(x)=\sqrt{2 \cos(x)}

\displaystyle g(x)=\sqrt{ \cos(x)}

Interval: \displaystyle -\frac{\pi}{2} \leq x \leq \frac{\pi}{2}

Possible Answers:

\displaystyle V=\frac{\pi}{2}

\displaystyle V=2\pi

\displaystyle V=4\pi

\displaystyle V=\pi

\displaystyle V=\frac{\pi}{4}

Correct answer:

\displaystyle V=2\pi

Explanation:

This volume can be found with the washer method, which is done using the equation

\displaystyle V=\int^{b}_{a}\pi[(f(x))^{2}-(g(x))^{2}]dx

where the region to be revolved around the x axis has the upper bound of f(x), the lower bound of g(x), and exists on the interval [a, b].  Applying this equation:

\displaystyle V=\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}} \pi [(\sqrt{2\cos x} )^{2}-(\sqrt{\cos x} )^{2}]dxV=\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}} \pi \cos(x)dx

\displaystyle V=\pi \sin(x)\left.\begin{matrix} \\ \end{matrix}\right|^{\frac{\pi}{2}}_{-\frac{\pi}{2}}=2\pi

Example Question #11 : Volume Of A Solid

Let R be the region between the function f(x) and g(x) on the interval given below.  Find the volume V obtained by revolving R around the y-axis.  

\displaystyle f(x)=(x-3)^{2}

\displaystyle g(x)=-(x-3)^{2}

Interval: \displaystyle 1 \leq x \leq 2

Possible Answers:

\displaystyle V=13\pi

\displaystyle V=\frac{13\pi}{2}

\displaystyle V=\frac{26\pi}{3}

\displaystyle V=\frac{28\pi}{3}

\displaystyle V=\frac{14\pi}{3}

Correct answer:

\displaystyle V=13\pi

Explanation:

This volume can be found using the shell method by implementing the formula

\displaystyle V=\int^{a}_{b}2 \pi x [f(x)-g(x)]dx

Where the region to be rotated about the y-axis is between f(x) and g(x) on the interval \displaystyle a \leq x \leq b.  

Additionally, one can notice that here, because f(x)=-g(x), the region between the two function is the same as twice the region betwee f(x) and the x-axis, simplifying our problem.  Using this symmetry and the above formula:

\displaystyle V=2 \int^{2}_{1}2\pi x (f(x))dx=4\pi \int^{2}_{1}x(x-3)^{2}dx=4\pi \int^{2}_{1}(x^{3}-6x^{2}+9x)dx

\displaystyle V=4\pi(\frac{x^{4}}{4}-2x^{3}+\frac{9x^{2}}{2})\left.\begin{matrix} \\ \end{matrix}\right|^{2}_{1}=13\pi

Example Question #13 : Volume Of A Solid

Using integration by parts, evaluate the following indefinite integral:

 

\displaystyle \int \frac{1}{2}x^{2}e^{2x}dx

Possible Answers:

\displaystyle \frac{e^{2x}}{2}(x^{2}-x+\frac{1}{2})+C

\displaystyle \frac{e^{2x}}{4}(x-\frac{1}{2})+C

\displaystyle \frac{1}{4}x^{2}e^{2x}+C

\displaystyle \frac{e^{2x}}{4}(x^{2}-x+\frac{1}{2})+C

\displaystyle \frac{e^{2x}}{2}(x^{2}+x-\frac{1}{2})+C

Correct answer:

\displaystyle \frac{e^{2x}}{4}(x^{2}-x+\frac{1}{2})+C

Explanation:

In order to evaluate an integral by parts, utilize the equation:

\displaystyle \int u\, dv=uv-\int v \, du

For the integral given, we can define u and dv:

\displaystyle u=\frac{1}{2}x^{2}, \,\,\,\, dv=e^{2x}dx

From this, we can evalute du and v:

\displaystyle v=\frac{1}{2}e^{2x}, \,\,\,\, du=x\,dx

Combining these elements usng the equation above, we can begin to evaluate the integral:

\displaystyle \int \frac{1}{2}x^{2}e^{2x}dx=(\frac{1}{2}x^{2})(\frac{1}{2}e^{2x})-\int \frac{1}{2}e^{2x}x\, dx=\frac{1}{4}x^{2}e^{2x}-\int \frac{1}{2}e^{2x}x\, dx

The final term of this answer needs to be further, again by integration by parts:

\displaystyle u=\frac{1}{2}x, \,\,\,\, dv=e^{2x}dx

\displaystyle v=\frac{1}{2}e^{2x}, \,\,\,\, du=\frac{1}{2}dx

Doing the integration:

\displaystyle \int \frac{1}{2}e^{2x}x\, dx=\frac{1}{4}e^{2x}x-\int\frac{1}{4}e^{2x}dx=\frac{1}{4}e^{2x}x-\frac{1}{8}e^{2x}

Substituting this in back for the previous partial solution:

\displaystyle \int \frac{1}{2}e^{2x}x^{2}\, dx=\frac{1}{4}x^{2}e^{2x}-\frac{1}{4}e^{2x}x+\frac{1}{8}e^{2x}+C=\frac{e^{2x}}{4}(x^{2}-x+\frac{1}{2})+C

 

 

Learning Tools by Varsity Tutors