Common Core: 1st Grade Math : Common Core Math: Grade 1

Study concepts, example questions & explanations for Common Core: 1st Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #131 : Adding And Subtracting Within 20: Ccss.Math.Content.1.Oa.C.6

\(\displaystyle \frac{\begin{array}[b]{r}15\\ -\ 10\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 4\)

\(\displaystyle 2\)

\(\displaystyle 3\)

\(\displaystyle 1\)

\(\displaystyle 5\)

Correct answer:

\(\displaystyle 5\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 15\) and count back \(\displaystyle 10\).

\(\displaystyle 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5\)

\(\displaystyle \frac{\begin{array}[b]{r}15\\ -\ 10\end{array}}{ \ \ \ \ \ \space 5}\)

Example Question #141 : Adding And Subtracting Within 20: Ccss.Math.Content.1.Oa.C.6

\(\displaystyle \frac{\begin{array}[b]{r}14\\ -\ 11\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 1\)

\(\displaystyle 2\)

\(\displaystyle 3\)

\(\displaystyle 4\)

Correct answer:

\(\displaystyle 3\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 14\) and count back \(\displaystyle 11\).

\(\displaystyle 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3\)

\(\displaystyle \frac{\begin{array}[b]{r}14\\ -\ 11\end{array}}{ \ \ \ \ \space 3}\)

Example Question #141 : Adding And Subtracting Within 20: Ccss.Math.Content.1.Oa.C.6

\(\displaystyle \frac{\begin{array}[b]{r}12\\ -\ 12\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 3\)

\(\displaystyle 4\)

\(\displaystyle 2\)

\(\displaystyle 1\)

Correct answer:

\(\displaystyle 0\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 12\) and count back \(\displaystyle 12\).

\(\displaystyle 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0\)

\(\displaystyle \frac{\begin{array}[b]{r}12\\ -\ 12\end{array}}{ \ \ \ \space 0}\)

Example Question #262 : Operations & Algebraic Thinking

\(\displaystyle \frac{\begin{array}[b]{r}11\\ -\ 6\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 8\)

\(\displaystyle 5\)

\(\displaystyle 7\)

\(\displaystyle 4\)

\(\displaystyle 6\)

Correct answer:

\(\displaystyle 5\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 11\) and count back \(\displaystyle 6\).

\(\displaystyle 11, 10, 9, 8, 7, 6, 5\)

\(\displaystyle \frac{\begin{array}[b]{r}11\\ -\ 6\end{array}}{ \ \ \ \space 5}\)

Example Question #263 : Operations & Algebraic Thinking

\(\displaystyle \frac{\begin{array}[b]{r}10\\ -\ 1\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 7\)

\(\displaystyle 8\)

\(\displaystyle 6\)

\(\displaystyle 5\)

\(\displaystyle 9\)

Correct answer:

\(\displaystyle 9\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 10\) and count back \(\displaystyle 1\).

\(\displaystyle 10,9\)

\(\displaystyle \frac{\begin{array}[b]{r}10\\ -\ 1\end{array}}{ \ \ \ \space 9}\)

Example Question #264 : Operations & Algebraic Thinking

\(\displaystyle \frac{\begin{array}[b]{r}5\\ -\ 1\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 4\)

\(\displaystyle 5\)

\(\displaystyle 1\)

\(\displaystyle 3\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 4\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 5\) and count back \(\displaystyle 1\).

\(\displaystyle 5,4\)

\(\displaystyle \frac{\begin{array}[b]{r}5\\ -\ 1\end{array}}{ \ \ \ \space 4}\)

Example Question #161 : Adding And Subtracting Within 20

\(\displaystyle \frac{\begin{array}[b]{r}17\\ -\ 16\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 1\)

\(\displaystyle 4\)

\(\displaystyle 0\)

\(\displaystyle 2\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle 1\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 17\) and count back \(\displaystyle 16\).

\(\displaystyle 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1\)

\(\displaystyle \frac{\begin{array}[b]{r}17\\ -\ 16\end{array}}{ \ \ \ \ \ \space 1}\)

Example Question #146 : Adding And Subtracting Within 20: Ccss.Math.Content.1.Oa.C.6

\(\displaystyle \frac{\begin{array}[b]{r}14\\ -\ 14\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 1\)

\(\displaystyle 2\)

\(\displaystyle 4\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle 0\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 14\) and count back \(\displaystyle 14\).

\(\displaystyle 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0\)

\(\displaystyle \frac{\begin{array}[b]{r}14\\ -\ 14\end{array}}{ \ \ \ \space 0}\)

Example Question #711 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}19\\ -\ 10\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 6\)

\(\displaystyle 7\)

\(\displaystyle 9\)

\(\displaystyle 10\)

\(\displaystyle 8\)

Correct answer:

\(\displaystyle 9\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 19\) and count back \(\displaystyle 10\).

\(\displaystyle 19, 18, 17, 16, 15, 14, 13, 12, 11, 10,9\)

\(\displaystyle \frac{\begin{array}[b]{r}19\\ -\ 10\end{array}}{ \ \ \ \ \space 9}\)

Example Question #148 : Adding And Subtracting Within 20: Ccss.Math.Content.1.Oa.C.6

\(\displaystyle \frac{\begin{array}[b]{r}19\\ -\ 14\end{array}}{ \ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 7\)

\(\displaystyle 6\)

\(\displaystyle 3\)

\(\displaystyle 4\)

\(\displaystyle 5\)

Correct answer:

\(\displaystyle 5\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 19\) and count back \(\displaystyle 14\).

\(\displaystyle 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5\)

\(\displaystyle \frac{\begin{array}[b]{r}19\\ -\ 14\end{array}}{ \ \ \ \ \space 5}\)

Learning Tools by Varsity Tutors