Common Core: 6th Grade Math : Fluently Divide Multi-Digit Numbers: CCSS.Math.Content.6.NS.B.2

Study concepts, example questions & explanations for Common Core: 6th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #101 : Grade 6

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 21\\ 9{\overline{\smash{)}189}}\\ -\ 18 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 9\times 32\)

\(\displaystyle 9\times 18\)

\(\displaystyle 9\times 27\)

\(\displaystyle 9\times 21\)

\(\displaystyle 9\times 23\)

Correct answer:

\(\displaystyle 9\times 21\)

Explanation:

The computation shows that \(\displaystyle 189\div9=21\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 21}\\ {\color{Green} 9}{\overline{\smash{)}189}}\\ -\ 18 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 9\times21=189+0\)

Simplify.

\(\displaystyle 9\times21=189\)

The correct answer is \(\displaystyle 9\times 21\)

Example Question #107 : Grade 6

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 31\\ 9{\overline{\smash{)}279}}\\ -\ 27 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 9\times 93\)

\(\displaystyle 9\times 33\)

\(\displaystyle 3\times 93\)

\(\displaystyle 9\times 31\)

\(\displaystyle 9\times 36\)

Correct answer:

\(\displaystyle 9\times 31\)

Explanation:

The computation shows that \(\displaystyle 279\div9=31\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 31}\\ {\color{Green} 9}{\overline{\smash{)}279}}\\ -\ 27 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 9\times31=279+0\)

Simplify.

\(\displaystyle 9\times31=279\)

The correct answer is \(\displaystyle 9\times 31\)

Example Question #12 : Fluently Divide Multi Digit Numbers: Ccss.Math.Content.6.Ns.B.2

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 21\\ 7{\overline{\smash{)}147}}\\ -\ 14 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{7\ \ }\\ -\ \ \ 7\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 7\times 21\)

\(\displaystyle 7\times 28\)

\(\displaystyle 7\times 41\)

\(\displaystyle 7\times 31\)

\(\displaystyle 7\times 17\)

Correct answer:

\(\displaystyle 7\times 21\)

Explanation:

The computation shows that \(\displaystyle 147\div7=21\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 21}\\ {\color{Green} 7}{\overline{\smash{)}147}}\\ -\ 14 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 7\ \ }\\ -\ \ \ 7\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 7\times21=147+0\)

Simplify.

\(\displaystyle 7\times21=147\)

The correct answer is \(\displaystyle 7\times 21\)

Example Question #101 : Grade 6

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 31\\ 7{\overline{\smash{)}217}}\\ -\ 21 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{7\ \ }\\ -\ \ \ 7\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 7\times 23\)

\(\displaystyle 7\times 28\)

\(\displaystyle 7\times 31\)

\(\displaystyle 7\times 34\)

\(\displaystyle 7\times 21\)

Correct answer:

\(\displaystyle 7\times 31\)

Explanation:

The computation shows that \(\displaystyle 217\div7=31\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 31}\\ {\color{Green} 7}{\overline{\smash{)}217}}\\ -\ 21 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 7\ \ }\\ -\ \ \ 7\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 7\times31=217+0\)

Simplify.

\(\displaystyle 7\times31=217\)

The correct answer is \(\displaystyle 7\times 31\)

Example Question #403 : How To Divide

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 41\\ 7{\overline{\smash{)}287}}\\ -\ 28 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{7\ \ }\\ -\ \ \ 7\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 7\times 31\)

\(\displaystyle 7\times 28\)

\(\displaystyle 7\times 41\)

\(\displaystyle 7\times 32\)

\(\displaystyle 7\times 21\)

Correct answer:

\(\displaystyle 7\times 41\)

Explanation:

The computation shows that \(\displaystyle 287\div7=41\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 41}\\ {\color{Green} 7}{\overline{\smash{)}287}}\\ -\ 28 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 7\ \ }\\ -\ \ \ 7\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 7\times41=287+0\)

Simplify.

\(\displaystyle 7\times41=287\)

The correct answer is \(\displaystyle 7\times 41\)

Example Question #111 : Grade 6

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 31\\ 6{\overline{\smash{)}186}}\\ -\ 18 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{6\ \ }\\ -\ \ \ 6\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

 \(\displaystyle 6\times 41\)

 \(\displaystyle 6\times 31\)

 \(\displaystyle 6\times 21\)

 \(\displaystyle 6\times 36\)

 \(\displaystyle 6\times 27\)

Correct answer:

 \(\displaystyle 6\times 31\)

Explanation:

The computation shows that \(\displaystyle 186\div6=31\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 31}\\ {\color{Green} 6}{\overline{\smash{)}186}}\\ -\ 18 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 6\ \ }\\ -\ \ \ 6\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 6\times31=186+0\)

Simplify.

\(\displaystyle 6\times31=186\)

The correct answer is \(\displaystyle 6\times 31\)

 

Example Question #112 : Grade 6

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 21\\ 8{\overline{\smash{)}168}}\\ -\ 16 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{8\ \ }\\ -\ \ \ 8\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 8\times 41\)

\(\displaystyle 8\times 27\)

\(\displaystyle 8\times 31\)

\(\displaystyle 8\times 11\)

\(\displaystyle 8\times 21\)

Correct answer:

\(\displaystyle 8\times 21\)

Explanation:

The computation shows that \(\displaystyle 168\div8=21\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 21}\\ {\color{Green} 8}{\overline{\smash{)}168}}\\ -\ 16 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 8\ \ }\\ -\ \ \ 8\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 8\times21=168+0\)

Simplify.

\(\displaystyle 8\times21=168\)

The correct answer is \(\displaystyle 8\times 21\)

Example Question #113 : Grade 6

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 31\\ 8{\overline{\smash{)}248}}\\ -\ 24 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{8\ \ }\\ -\ \ \ 8\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 8\times 31\)

\(\displaystyle 8\times 21\)

\(\displaystyle 8\times 41\)

\(\displaystyle 8\times 27\)

\(\displaystyle 8\times 32\)

Correct answer:

\(\displaystyle 8\times 31\)

Explanation:

The computation shows that \(\displaystyle 248\div8=31\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 31}\\ {\color{Green} 8}{\overline{\smash{)}248}}\\ -\ 24 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 8\ \ }\\ -\ \ \ 8\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 8\times31=248+0\)

Simplify.

\(\displaystyle 8\times31=248\)

The correct answer is \(\displaystyle 8\times 31\)

Example Question #14 : Fluently Divide Multi Digit Numbers: Ccss.Math.Content.6.Ns.B.2

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 41\\ 8{\overline{\smash{)}328}}\\ -\ 32 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{8\ \ }\\ -\ \ \ 8\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 8\times 51\)

\(\displaystyle 8\times 41\)

\(\displaystyle 8\times 27\)

\(\displaystyle 8\times 38\)

\(\displaystyle 8\times 31\)

Correct answer:

\(\displaystyle 8\times 41\)

Explanation:

The computation shows that \(\displaystyle 328\div8=41\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 41}\\ {\color{Green} 8}{\overline{\smash{)}328}}\\ -\ 32 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 8\ \ }\\ -\ \ \ 8\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 8\times41=328+0\)

Simplify.

\(\displaystyle 8\times41=328\)

The correct answer is \(\displaystyle 8\times 41\)

Example Question #115 : Grade 6

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 31\\ 9{\overline{\smash{)}279}}\\ -\ 27 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 9\times 31\)

\(\displaystyle 9\times 27\)

\(\displaystyle 9\times 21\)

\(\displaystyle 9\times 12\)

\(\displaystyle 9\times 41\)

Correct answer:

\(\displaystyle 9\times 31\)

Explanation:

The computation shows that \(\displaystyle 279\div9=31\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 31}\\ {\color{Green} 9}{\overline{\smash{)}279}}\\ -\ 27 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 9\times31=279+0\)

Simplify.

\(\displaystyle 9\times31=279\)

The correct answer is \(\displaystyle 9\times 31\)

Learning Tools by Varsity Tutors