Common Core: High School - Geometry : Circles

Study concepts, example questions & explanations for Common Core: High School - Geometry

varsity tutors app store varsity tutors android store

All Common Core: High School - Geometry Resources

6 Diagnostic Tests 114 Practice Tests Question of the Day Flashcards Learn by Concept

Example Questions

Example Question #1 : Circles

Given \(\displaystyle \frac{C}{C'}=25\), and \(\displaystyle R=4\), what is \(\displaystyle R'?\)

Screen shot 2020 07 01 at 7.06.26 pm

Possible Answers:

\(\displaystyle R'=25\)

\(\displaystyle R'=4\)

\(\displaystyle R'=\frac{4}{25}\)

\(\displaystyle R'=100\)

\(\displaystyle R'=\frac{25}{4}\)

Correct answer:

\(\displaystyle R'=\frac{4}{25}\)

Explanation:

In order to do this problem, we need to remember the relationship between Circumference's, and Radii. \(\displaystyle \frac{C}{C'}=\frac{R}{R'}\). With this relationship, we can determine what \(\displaystyle R'\) is.

\(\displaystyle \frac{C}{C'}=\frac{R}{R'}\)

Substitute for the variables given in the question.

\(\displaystyle 25=\frac{4}{R'}\)

Multiply by \(\displaystyle R'\) on each side.

 

\(\displaystyle 25R'=4\)

Divide by \(\displaystyle 25\) to get \(\displaystyle R'\).

\(\displaystyle R'=\frac{4}{25}\)

Example Question #1 : Similar Circles: Ccss.Math.Content.Hsg C.A.1

Given \(\displaystyle \frac{C}{C'}=118\), and \(\displaystyle R=12\), what is \(\displaystyle R'?\)

Screen shot 2020 07 01 at 7.06.26 pm

Possible Answers:

\(\displaystyle R'=6\)

\(\displaystyle R'=\frac{6}{59}\)

\(\displaystyle R'=118\)

\(\displaystyle R'=\frac{1}{118}\)

\(\displaystyle R'=59\)

Correct answer:

\(\displaystyle R'=\frac{6}{59}\)

Explanation:

In order to do this problem, we need to remember the relationship between Circumference's, and Radii. \(\displaystyle \frac{C}{C'}=\frac{R}{R'}\). With this relationship, we can determine what \(\displaystyle R'\) is.

\(\displaystyle \frac{C}{C'}=\frac{R}{R'}\)

Substitute for the variables given in the question.

\(\displaystyle 118=\frac{12}{R'}\)

Multiply by \(\displaystyle R'\) on each side.

 

\(\displaystyle 118R'=12\)

Divide by \(\displaystyle 118\) to get \(\displaystyle R'\).

\(\displaystyle R'=\frac{12}{118}=\frac{6}{59}\)

Example Question #2 : Circles

Given \(\displaystyle \frac{C}{C'}=115\), and \(\displaystyle R=9\), what is \(\displaystyle R'?\)

Screen shot 2020 07 01 at 7.06.26 pm

Possible Answers:

\(\displaystyle R'=\frac{9}{115}\)

\(\displaystyle R'=\frac{115}{9}\)

\(\displaystyle R'=106\)

\(\displaystyle R'=9\)

\(\displaystyle R'=115\)

Correct answer:

\(\displaystyle R'=\frac{9}{115}\)

Explanation:

In order to do this problem, we need to remember the relationship between Circumference's, and Radii. \(\displaystyle \frac{C}{C'}=\frac{R}{R'}\). With this relationship, we can determine what \(\displaystyle R'\) is.

\(\displaystyle \frac{C}{C'}=\frac{R}{R'}\)

Substitute for the variables given in the question.

\(\displaystyle 115=\frac{9}{R'}\)

Multiply by \(\displaystyle R'\) on each side.

 

\(\displaystyle 115R'=9\)

Divide by \(\displaystyle 115\) to get \(\displaystyle R'\).

\(\displaystyle R'=\frac{9}{115}\)

Example Question #3 : Circles

Given \(\displaystyle \frac{C}{C'}=58\), and \(\displaystyle R=6\), what is \(\displaystyle R'?\)

Screen shot 2020 07 01 at 7.06.26 pm

Possible Answers:

\(\displaystyle R'=\frac{29}{3}\)

\(\displaystyle R'=58\)

\(\displaystyle R'=29\)

\(\displaystyle R'=3\)

\(\displaystyle R'=\frac{3}{29}\)

Correct answer:

\(\displaystyle R'=\frac{3}{29}\)

Explanation:

In order to do this problem, we need to remember the relationship between Circumference's, and Radii. \(\displaystyle \frac{C}{C'}=\frac{R}{R'}\). With this relationship, we can determine what \(\displaystyle R'\) is.

\(\displaystyle \frac{C}{C'}=\frac{R}{R'}\)

Substitute for the variables given in the question.

\(\displaystyle 58=\frac{6}{R'}\)

Multiply by \(\displaystyle R'\) on each side.

 

\(\displaystyle 58R'=6\)

Divide by \(\displaystyle 58\) to get \(\displaystyle R'\).

\(\displaystyle R'=\frac{6}{58}=\frac{3}{29}\)

Example Question #4 : Circles

Given \(\displaystyle \frac{C}{C'}=55\), and \(\displaystyle R=18\), what is \(\displaystyle R'?\)

Screen shot 2020 07 01 at 7.06.26 pm

Possible Answers:

\(\displaystyle R'=18\)

\(\displaystyle R'=\frac{18}{55}\)

\(\displaystyle R'=\frac{1}{18}\)

\(\displaystyle R'=55\)

\(\displaystyle R'=\frac{55}{18}\)

Correct answer:

\(\displaystyle R'=\frac{18}{55}\)

Explanation:

In order to do this problem, we need to remember the relationship between Circumference's, and Radii. \(\displaystyle \frac{C}{C'}=\frac{R}{R'}\). With this relationship, we can determine what \(\displaystyle R'\) is.

\(\displaystyle \frac{C}{C'}=\frac{R}{R'}\)

Substitute for the variables given in the question.

\(\displaystyle 55=\frac{18}{R'}\)

Multiply by \(\displaystyle R'\) on each side.

 

\(\displaystyle 55R'=18\)

Divide by \(\displaystyle 55\) to get \(\displaystyle R'\).

\(\displaystyle R'=\frac{18}{55}\)

Example Question #3 : Circles

Given \(\displaystyle \frac{C}{C'}=113\), and \(\displaystyle R=12\), what is \(\displaystyle R'?\)

Screen shot 2020 07 01 at 7.06.26 pm

Possible Answers:

\(\displaystyle R'=113\)

\(\displaystyle R'=\frac{12}{113}\)

\(\displaystyle R'=\frac{1}{12}\)

\(\displaystyle R'=\frac{113}{12}\)

\(\displaystyle R'=12\)

Correct answer:

\(\displaystyle R'=\frac{12}{113}\)

Explanation:

In order to do this problem, we need to remember the relationship between Circumference's, and Radii. \(\displaystyle \frac{C}{C'}=\frac{R}{R'}\). With this relationship, we can determine what \(\displaystyle R'\) is.

\(\displaystyle \frac{C}{C'}=\frac{R}{R'}\)

Substitute for the variables given in the question.

\(\displaystyle 113=\frac{12}{R'}\)

Multiply by \(\displaystyle R'\) on each side.

 

\(\displaystyle 113R'=12\)

Divide by \(\displaystyle 113\) to get \(\displaystyle R'\).

\(\displaystyle R'=\frac{12}{113}\)

Example Question #1 : Similar Circles: Ccss.Math.Content.Hsg C.A.1

Given \(\displaystyle \frac{C}{C'}=113\), and \(\displaystyle R=16\), what is \(\displaystyle R'?\)

Screen shot 2020 07 01 at 7.06.26 pm

Possible Answers:

\(\displaystyle R'=113\)

\(\displaystyle R'=16\)

\(\displaystyle R'=\frac{113}{16}\)

\(\displaystyle R'=\frac{1}{16}\)

\(\displaystyle R'=\frac{16}{113}\)

Correct answer:

\(\displaystyle R'=\frac{16}{113}\)

Explanation:

In order to do this problem, we need to remember the relationship between Circumference's, and Radii. \(\displaystyle \frac{C}{C'}=\frac{R}{R'}\). With this relationship, we can determine what \(\displaystyle R'\) is.

\(\displaystyle \frac{C}{C'}=\frac{R}{R'}\)

Substitute for the variables given in the question.

\(\displaystyle 113=\frac{16}{R'}\)

Multiply by \(\displaystyle R'\) on each side.

 

\(\displaystyle 113R'=16\)

Divide by \(\displaystyle 113\) to get \(\displaystyle R'\).

\(\displaystyle R'=\frac{16}{113}\)

Example Question #2 : Similar Circles: Ccss.Math.Content.Hsg C.A.1

Given \(\displaystyle \frac{C}{C'}=36\), and \(\displaystyle R=8\), what is \(\displaystyle R'?\)

Screen shot 2020 07 01 at 7.06.26 pm

Possible Answers:

\(\displaystyle R'=2\)

\(\displaystyle R'=9\)

\(\displaystyle R'=\frac{9}{2}\)

\(\displaystyle R'=\frac{2}{9}\)

\(\displaystyle R'=36\)

Correct answer:

\(\displaystyle R'=\frac{2}{9}\)

Explanation:

In order to do this problem, we need to remember the relationship between Circumference's, and Radii. \(\displaystyle \frac{C}{C'}=\frac{R}{R'}\). With this relationship, we can determine what \(\displaystyle R'\) is.

\(\displaystyle \frac{C}{C'}=\frac{R}{R'}\)

Substitute for the variables given in the question.

\(\displaystyle 36=\frac{8}{R'}\)

Multiply by \(\displaystyle R'\) on each side.

 

\(\displaystyle 36R'=8\)

Divide by \(\displaystyle 36\) to get \(\displaystyle R'\).

\(\displaystyle R'=\frac{8}{36}=\frac{2}{9}\)

Example Question #2 : Similar Circles: Ccss.Math.Content.Hsg C.A.1

Given \(\displaystyle \frac{C}{C'}=92\), and \(\displaystyle R=5\), what is \(\displaystyle R'?\)

Screen shot 2020 07 01 at 7.06.26 pm

Possible Answers:

\(\displaystyle R'=\frac{1}{92}\)

\(\displaystyle R'=\frac{92}{5}\)

\(\displaystyle R'=5\)

\(\displaystyle R'=92\)

\(\displaystyle R'=\frac{5}{92}\)

Correct answer:

\(\displaystyle R'=\frac{5}{92}\)

Explanation:

In order to do this problem, we need to remember the relationship between Circumference's, and Radii. \(\displaystyle \frac{C}{C'}=\frac{R}{R'}\). With this relationship, we can determine what \(\displaystyle R'\) is.

\(\displaystyle \frac{C}{C'}=\frac{R}{R'}\)

Substitute for the variables given in the question.

\(\displaystyle 92=\frac{5}{R'}\)

Multiply by \(\displaystyle R'\) on each side.

\(\displaystyle 92R'=5\)

Divide by \(\displaystyle 92\) to get \(\displaystyle R'\).

\(\displaystyle R'=\frac{5}{92}\)

Example Question #2 : Similar Circles: Ccss.Math.Content.Hsg C.A.1

Given \(\displaystyle \frac{C}{C'}=76\), and \(\displaystyle R=6\), what is \(\displaystyle R'?\)

Screen shot 2020 07 01 at 7.06.26 pm

Possible Answers:

\(\displaystyle R'=38\)

\(\displaystyle R'=\frac{3}{38}\)

\(\displaystyle R'=\frac{38}{3}\)

\(\displaystyle R'=\frac{1}{38}\)

\(\displaystyle R'=3\)

Correct answer:

\(\displaystyle R'=\frac{3}{38}\)

Explanation:

In order to do this problem, we need to remember the relationship between Circumference's, and Radii. \(\displaystyle \frac{C}{C'}=\frac{R}{R'}\). With this relationship, we can determine what \(\displaystyle R'\) is.

\(\displaystyle \frac{C}{C'}=\frac{R}{R'}\)

Substitute for the variables given in the question.

\(\displaystyle 76=\frac{6}{R'}\)

Multiply by \(\displaystyle R'\) on each side.

 

\(\displaystyle 76R'=6\)

Divide by \(\displaystyle 76\) to get \(\displaystyle R'\).

\(\displaystyle R'=\frac{6}{76}=\frac{3}{38}\)

All Common Core: High School - Geometry Resources

6 Diagnostic Tests 114 Practice Tests Question of the Day Flashcards Learn by Concept
Learning Tools by Varsity Tutors