GRE Subject Test: Math : Algebra

Study concepts, example questions & explanations for GRE Subject Test: Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #91 : Linear Algebra

Given points \displaystyle (-7,0,5) and \displaystyle (0,4,2), what is the vector form of the distance between the points?

Possible Answers:

\displaystyle \left \langle -7,-4,-3\right \rangle

\displaystyle \left \langle 7,4,-3\right \rangle

\displaystyle \left \langle 7,-4,-3\right \rangle

\displaystyle \left \langle 7,4,3\right \rangle

\displaystyle \left \langle 7,-4,3\right \rangle

Correct answer:

\displaystyle \left \langle 7,4,-3\right \rangle

Explanation:

In order to derive the vector form of the distance between two points, we must find the difference between the , and  elements of the points. That is, for any point  and , the distance is the vector .

Subbing in our original points \displaystyle (-7,0,5) and \displaystyle (0,4,2), we get:

\displaystyle v=\left \langle 0-(-7),4-0,2-5\right \rangle

\displaystyle v=\left \langle 7,4,-3\right \rangle

 

Example Question #71 : Vector Form

Given points \displaystyle (1,1,-1) and \displaystyle (0,1,-1), what is the vector form of the distance between the points?

Possible Answers:

\displaystyle \left \langle 0,0,-1\right \rangle

\displaystyle \left \langle 0,1,0\right \rangle

\displaystyle \left \langle 0,-1,0\right \rangle

\displaystyle \left \langle -1,0,0\right \rangle

\displaystyle \left \langle 1,0,0\right \rangle

Correct answer:

\displaystyle \left \langle -1,0,0\right \rangle

Explanation:

In order to derive the vector form of the distance between two points, we must find the difference between the , and  elements of the points. That is, for any point  and , the distance is the vector .

Subbing in our original points \displaystyle (1,1,-1) and \displaystyle (0,1,-1), we get:

\displaystyle v=\left \langle 0-1,1-1,-1-(-1)\right \rangle

\displaystyle v=\left \langle -1,0,0\right \rangle

 

Example Question #93 : Linear Algebra

What is the vector form of \displaystyle 7i+6j-k?

Possible Answers:

\displaystyle \left \langle 7,-6,1\right \rangle

\displaystyle \left \langle 7,-6,-1\right \rangle

\displaystyle \left \langle 7,6,-1\right \rangle

\displaystyle \left \langle 7,6,1\right \rangle

\displaystyle \left \langle -7,-6,-1\right \rangle

Correct answer:

\displaystyle \left \langle 7,6,-1\right \rangle

Explanation:

In order to derive the vector form, we must map the , , -coordinates to their corresponding , , and coefficients. That is, given, the vector form is  . So for \displaystyle 7i+6j-k, we can derive the vector form \displaystyle \left \langle 7,6,-1\right \rangle.

Example Question #71 : Vectors

What is the vector form of \displaystyle -i+j+k?

Possible Answers:

\displaystyle \left \langle -1,-1,1\right \rangle

\displaystyle \left \langle 1,-1,1\right \rangle

\displaystyle \left \langle 1,1,-1\right \rangle

\displaystyle \left \langle 1,-1,1\right \rangle

\displaystyle \left \langle -1,1,1\right \rangle

Correct answer:

\displaystyle \left \langle -1,1,1\right \rangle

Explanation:

In order to derive the vector form, we must map the -coordinates to their corresponding , and coefficients. That is, given, the vector form is  . So for \displaystyle -i+j+k, we can derive the vector form \displaystyle \left \langle -1,1,1\right \rangle.

Example Question #81 : Vectors & Spaces

Given points \displaystyle (10,8,6) and \displaystyle (7,9,11), what is the vector form of the distance between the points?

Possible Answers:

\displaystyle \left \langle -3,-1,-5\right \rangle

\displaystyle \left \langle 3,1,-5\right \rangle

\displaystyle \left \langle 3,-1,-5\right \rangle

\displaystyle \left \langle 3,-1,5\right \rangle

\displaystyle \left \langle -3,1,5\right \rangle

Correct answer:

\displaystyle \left \langle -3,1,5\right \rangle

Explanation:

In order to derive the vector form of the distance between two points, we must find the difference between the , , and elements of the points. That is, for any point and , the distance is the vector .

Subbing in our original points \displaystyle (10,8,6) and \displaystyle (7,9,11),  we get:

\displaystyle v=\left \langle 7-10,9-8,11-6\right \rangle

\displaystyle v=\left \langle -3,1,5\right \rangle

 

 

 

Example Question #71 : Vector

Given points \displaystyle (1,9,-1) and \displaystyle (2,2,7), what is the vector form of the distance between the points?

Possible Answers:

\displaystyle \left \langle 1,-7,8\right \rangle

\displaystyle \left \langle -1,7,8\right \rangle

\displaystyle \left \langle 1,7,-8\right \rangle

\displaystyle \left \langle -1,-7,8\right \rangle

\displaystyle \left \langle 1,7,8\right \rangle

Correct answer:

\displaystyle \left \langle 1,-7,8\right \rangle

Explanation:

In order to derive the vector form of the distance between two points, we must find the difference between the , , and elements of the points. That is, for any point and , the distance is the vector .

Subbing in our original points \displaystyle (1,9,-1) and \displaystyle (2,2,7) we get:

\displaystyle v=\left \langle 2-1,2-9,7-(-1)\right \rangle

\displaystyle v=\left \langle 1,-7,8\right \rangle

Example Question #72 : Vector

What is the vector form of \displaystyle 2i-18j+3k?

 

Possible Answers:

\displaystyle \left \langle 2,18,3\right \rangle

\displaystyle \left \langle 2,18,-3\right \rangle

\displaystyle \left \langle 2,-18,3\right \rangle

\displaystyle \left \langle -2,-18,-3\right \rangle

\displaystyle \left \langle -2,18,3\right \rangle

Correct answer:

\displaystyle \left \langle 2,-18,3\right \rangle

Explanation:

In order to derive the vector form, we must map the , , -coordinates to their corresponding , , and coefficients.

That is, given , the vector form is  .

So for \displaystyle 2i-18j+3k , we can derive the vector form \displaystyle \left \langle 2,-18,3\right \rangle.

Example Question #81 : Vector

What is the vector form of \displaystyle -k?

Possible Answers:

\displaystyle \left \langle 1,0,0\right \rangle

\displaystyle \left \langle 0,0,1\right \rangle

\displaystyle \left \langle -1,0,0\right \rangle

\displaystyle \left \langle 0,-1,0\right \rangle

\displaystyle \left \langle 0,0,-1\right \rangle

Correct answer:

\displaystyle \left \langle 0,0,-1\right \rangle

Explanation:

In order to derive the vector form, we must map the -coordinates to their corresponding , and coefficients.

That is, given , the vector form is  .

So for \displaystyle -k , we can derive the vector form \displaystyle \left \langle 0,0,-1\right \rangle.

Example Question #85 : Vectors & Spaces

Given points \displaystyle (2,0,-10) and \displaystyle (-5,1,6), what is the vector form of the distance between the points?

Possible Answers:

\displaystyle \left \langle -7,1,16\right \rangle

\displaystyle \left \langle 7,-1,16\right \rangle

\displaystyle \left \langle -7,-1,16\right \rangle

\displaystyle \left \langle 7,1,-16\right \rangle

\displaystyle \left \langle 7,1,16\right \rangle

Correct answer:

\displaystyle \left \langle -7,1,16\right \rangle

Explanation:

In order to derive the vector form of the distance between two points, we must find the difference between the , , and elements of the points. That is, for any point and , the distance is the vector .

Subbing in our original points \displaystyle (2,0,-10) and \displaystyle (-5,1,6), we get:

 \displaystyle v=\left \langle -5-2,1-0,6-(-10)\right \rangle

\displaystyle v=\left \langle -7,1,16\right \rangle

Example Question #81 : Vectors & Spaces

Given points \displaystyle (5,-5,5) and \displaystyle (-4,4,-4), what is the vector form of the distance between the points?

Possible Answers:

\displaystyle \left \langle -9,-9,-9\right \rangle

\displaystyle \left \langle 9,-9,-9\right \rangle

\displaystyle \left \langle -9,-9,9\right \rangle

\displaystyle \left \langle -9,9,-9\right \rangle

\displaystyle \left \langle 9,9,9\right \rangle

Correct answer:

\displaystyle \left \langle -9,9,-9\right \rangle

Explanation:

In order to derive the vector form of the distance between two points, we must find the difference between the , and  elements of the points. That is, for any point  and , the distance is the vector .

Subbing in our original points \displaystyle (5,-5,5) and \displaystyle (-4,4,-4), we get:

\displaystyle v=\left \langle -4-5,4-(-5),-4-5\right \rangle

\displaystyle v=\left \langle -9,9,-9\right \rangle

 

Learning Tools by Varsity Tutors