MCAT Biology : Biology

Study concepts, example questions & explanations for MCAT Biology

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3 : Dna Replication And Repair

Compared to RNA polymerase, DNA polymerase has a much lower error rate for nucleotide incorporation. What structural difference between the two polymerases accounts for this? 

Possible Answers:

DNA polymerase contains a proof-reading domain that allows it to recognize incorrect base-pair insertion before moving on; RNA polymerase does not. 

RNA polymerase incorporates the nucleic acids into sequences in such a way that they are more tightly bound to their partner nucleic acid, thus making it much more difficult to replace incorrect insertions.

RNA is much less stable that DNA, and this instability makes it much harder for RNA polymerase to proofread as it incorporates bases into the sequence.

RNA molecules are proofread after they are synthesized, whereas DNA molecules are not. 

Correct answer:

DNA polymerase contains a proof-reading domain that allows it to recognize incorrect base-pair insertion before moving on; RNA polymerase does not. 

Explanation:

RNA polymerase does not contain a proof reading domain, making it much more error prone than DNA polymerase. This domain in DNA polymerase prevents incorrect nucleotide insertion, reducing the errors made in DNA replication.

Example Question #3 : Dna, Rna, And Proteins

Several enzymes are required for DNA replication. What is the class of enzymes that is required for unwinding the DNA at the replication fork?

Possible Answers:

DNA polymerase

DNA helicase

Telomerase

Topoisomerase

Correct answer:

DNA helicase

Explanation:

DNA helicases use ATP to break the hydrogen bonds that separate complementary strands of DNA. During DNA replication, DNA helicases move along the DNA backbone with the replication fork and are responsble for unwinding the DNA at the fork.

Example Question #4 : Dna, Rna, And Proteins

Prions are the suspected cause of a wide variety of neurodegenerative diseases in mammals. According to prevailing theory, prions are infectious particles made only of protein and found in high concentrations in the brains of infected animals. All mammals produce normal prion protein, PrPC, a transmembrane protein whose function remains unclear. 

Infectious prions, PrPRes, induce conformational changes in the existing PrPC proteins according to the following reaction:

PrPC  + PrPRes  → PrPRes + PrPRes

The PrPRes is then suspected to accumulate in the nervous tissue of infected patients and cause disease. This model of transmission generates replicated proteins, but does so bypassing the standard model of the central dogma of molecular biology. Transcription and translation apparently do not play a role in this replication process.

This theory is a major departure from previously established biological dogma. A scientist decides to test the protein-only theory of prion propagation. He establishes his experiment as follows:

Homogenized brain matter of infected rabbits is injected into the brains of healthy rabbits, as per the following table:

Rabbit 1 and 2: injected with normal saline on days 1 and 2

The above trials serve as controls.

Rabbit 3 and 4: injected with homogenized brain matter on days 1 and 2

The above trials use unmodified brain matter.

Rabbit 5 and 6: injected with irradiated homogenized brain matter on days 1 and 2

The above trials use brain matter that has been irradiated to destroy nucleic acids in the homogenate.

Rabbit 7 and 8: injected with protein-free centrifuged homogenized brain matter on days 1 and 2

The above trials use brain matter that has been centrifuged to generate a protein-free homogenate and a protein-rich homogenate based on molecular weight.

Rabbit 9 and 10: injected with boiled homogenized brain matter on days 1 and 2

The above trials use brain matter that have been boiled to destroy any bacterial contaminants in the homogenate.

In the material used with Rabbits 5 and 6, irradiation was used to destroy DNA. In functioning, normal cells, what types of genes typically code for DNA repair proteins?

I. Tumor suppresor genes

II. Proto-onco genes

III. Pro-apoptotic genes

Possible Answers:

I and II, only

I and III, only

I, only

I, II, and III

II and III, only

Correct answer:

I, only

Explanation:

Tumor suppresor genes, like p53 and Rb, usually code for DNA repair enzymes. Proto-oncogenes typically code for cell growth factors or receptors, and pro-apoptotic proteins would not lead to DNA repair, but would prevent tumor development via cell death pathways.

Example Question #4 : Dna Replication And Repair

DNA replication is much more accurate than RNA transcription. In replication, only one base in every ten billion, on average, is inaccurately placed. 

What is the primary reason that transcription results in more errors than DNA replication?

Possible Answers:

Replication is done very slowly, only a couple base pairs per second, in order to prevent mistakes by DNA polymerase.

Transcription proceeds much more quickly than replication. This results in more mistakes by RNA polymerase.

DNA polymerase is able to repair mismatched nucleotides.

DNA polymerase synthesizes a new strand. Immediately after, a proofreading enzyme attaches and "checks" the new strand for errors.

Correct answer:

DNA polymerase is able to repair mismatched nucleotides.

Explanation:

In addition to creating a new DNA strand, DNA polymerase can function as an exonuclease. DNA polymerase I has the ability to remove mismatched nucleotides from the new strand and correct them. As a result, DNA replication is very accurate, because DNA polymerase has a proofreading mechanism.

Example Question #5 : Dna Replication And Repair

Which statement best describes the function of the enzyme DNA helicase?

Possible Answers:

It opens and unwinds the DNA double helix by disrupting the hydrogen bonds.

It proofreads the newly synthesized DNA for errors.

It begins replication of the leading strand during DNA synthesis.

It links nucleotide subunits together.

It prevents excess twisting of the DNA during replication.

Correct answer:

It opens and unwinds the DNA double helix by disrupting the hydrogen bonds.

Explanation:

DNA helicases are enzymes that separate the two DNA strands, and unwinds them as it progresses along the helix. It functions much like a zipper unwinding the DNA.

Example Question #2 : Dna Replication And Repair

Which base pair requires the least amount of energy to break? 

Possible Answers:

T-C

G-C

A-T

T-G

G-T

Correct answer:

A-T

Explanation:

The adenine and thymine base pairing forms 2 hydrogen bonds. Both cytosine and guanine form three hydrogen bonds. Thus the A-T base pair has the weakest interaction, and requires the least amount of energy to break.

Example Question #1161 : Biology

Which base pair requires the most amount of energy to break?

Possible Answers:

G-T

G-C

T-G

T-C

A-T

Correct answer:

G-C

Explanation:

The guanine and cytosine base pairing forms 3 hydrogen bonds. Both adenine and thymine form only 2 hydrogen bonds. Thus the G-C base pair has the strongest interactions, and requires the most amount of energy to break.

Example Question #121 : Cell Biology, Molecular Biology, And Genetics

Which of the following choices represents the structure of DNA from least organized to most organized?

Possible Answers:

Deoxyribose, nucleoside, nucleotide, DNA double helix, chromatin, nucleosome

None of these

Deoxyribose, nucleoside, chromatin, DNA double helix, nucleotide, nucleosome

Deoxyribose, nucleoside, nucleotide, DNA double helix, nucleosome, chromatin 

Nucleotide, deoxyribose, nucleotide, DNA double helix, chromatin, nucleosome

Correct answer:

Deoxyribose, nucleoside, nucleotide, DNA double helix, nucleosome, chromatin 

Explanation:

Deoxyribose is the sugar in the backbone of DNA. Next, a nitrogenous base is attached to the deoxyribose, which together, is called a nucleoside. A nucleoside with one or more phosphate groups attached is called a nucleotide. The double stranded DNA coils around histone proteins; this complex is called a nucleosome. Lastly the DNA gets further packaged and condensed into chromatin.

Example Question #11 : Dna Replication And Repair

The central nervous system consists of the brain and the spinal cord. In general, tracts allow for the brain to communicate up and down with the spinal cord. The commissures allow for the two hemispheres of the brain to communicate with each other. One of the most important commissures is the corpus callosum. The association fibers allow for the anterior regions of the brain to communicate with the posterior regions. One of the evolved routes from the spinal cord to the brain is via the dorsal column pathway. This route allows for fine touch, vibration, proprioception and 2 points discrimination. This pathway is much faster than the pain route. From the lower limbs, the signal ascends to the brain via a region called the gracile fasciculus. From the upper limbs, the signal ascends via the cuneate fasciculus region in the spinal cord.

The dorsal column pathway is a fast and advanced signaling system. Some researchers believe that this pathway evolved not to long ago. If this transformation required the change in the DNA, how might this have occurred? 

I. Point mutation

II. Frame shift

III. Nonsense mutation

Possible Answers:

II only

I and II

I only

III only

I, II, and III

Correct answer:

I, II, and III

Explanation:

All of these choices may cause a change in the DNA. A point mutation involves a single base pair change in the DNA or the RNA. A frameshift mutation involves a deletion or insertion, in which any number of base pairs are inserted or deleted, which causes a shift in the reading frame of the DNA (not RNA). A nonsense mutation involves the change in DNA that results in a premature stop codon in the mRNA. 

Example Question #121 : Cell Biology, Molecular Biology, And Genetics

Human chromosomes are divided into two arms, a long q arm and a short p arm.  A karyotype is the organization of a human cell’s total genetic complement.  A typical karyotype is generated by ordering chromosome 1 to chromosome 23 in order of decreasing size. 

When viewing a karyotype, it can often become apparent that changes in chromosome number, arrangement, or structure are present.  Among the most common genetic changes are Robertsonian translocations, involving transposition of chromosomal material between long arms of certain chromosomes to form one derivative chromosome.  Chromosomes 14 and 21, for example, often undergo a Robertsonian translocation, as below.

1

A karyotype of this individual for chromosomes 14 and 21 would thus appear as follows:

Pic2

Though an individual with aberrations such as a Robertsonian translocation may be phenotypically normal, they can generate gametes through meiosis that have atypical organizations of chromosomes, resulting in recurrent fetal abnormalities or miscarriages.

 

In chromosome 21, parts of the DNA are converted to protein, while other parts are interspersed, but do not correlate to the final protein sequence. The portions of the DNA that code for final amino acid sequence are called __________.

Possible Answers:

exons

template strands

Okazaki fragments

coding strands

introns

Correct answer:

exons

Explanation:

In the splicing model of DNA expression, certain regions of DNA are converted to proteins while intervening portions are cut out.  The portions of "junk DNA" are known as introns, while exons are the sequences actually converted to protein. Okazaki fragments may appear tempting, but actually refers to fragments of DNA synthesized during replication of the lagging strand.

Learning Tools by Varsity Tutors