All MCAT Biology Resources
Example Questions
Example Question #472 : Mcat Biological Sciences
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the loss of tolerance to self antigens leading to the presence of high autoantibody titers. There are several underlying causes behind SLE, one of which is a dysregulation in the clearance of apoptotic cells, which can lead to secondary necrosis. This leads to the leakage of danger signals which contributes to the loss of peripheral tolerance and chronic inflammation.
A deficiency in the clearance of apoptotic cells can be attributed to which immune cell type?
Germinal center B cells
Plasma cells
Macrophages
Natural killer cells
Cytotoxic T cells
Macrophages
The defect in clearance of apoptotic cells in SLE is mainly attributed to macrophages, which serve integral roles in phagocytosis of dead cells and debris. An inability to clear these apoptotic cells over time leads to secondary necrosis, which results in the production and release of several DAMPS or damage-associated molecular pattern molecules which are potent inducers of the immune response.
Example Question #101 : Immune System
Bone marrow chimeric mice are an invaluable tool used by immunologists to elucidate specific mechanisms of the immune response. The generation of these chimeras involve whole body irradiation to eliminate the mouse bone marrow followed by adoptive transfer of bone marrow from a donor mouse (usually transgenic).
One critical step in the successful generation of bone marrow chimeric mice involves the depletion of T cells from the donor bone marrow. Which of the following is reason for this necessary step?
The donor T cells are inherently defective in their ability to produce cytokines and growth factors needed in the bone marrow reconstitution.
All of these
The donor T cells may be activated by the MHC antigens from the recipient's cells, resulting in a graft versus host response.
The donor T cells have an inherently reduced cytotoxic killing ability.
The donor T cells are unable to reconstitute, proliferate, and mature in the recipient mouse.
The donor T cells may be activated by the MHC antigens from the recipient's cells, resulting in a graft versus host response.
T cells from the donor must be depleted due to the risk of incompatible MHC antigens on the recipient cells. If there is incompatibility, the donor T cells will attack and kill the host cells resulting in a graft versus host response.
Example Question #1 : Kidney And Nephron Physiology
Which of the following processes occurs in the kidney?
Secretion
The kidney uses all of the listed processes
Filtration
Reabsorption
The kidney uses all of the listed processes
The kidney uses all three of the following processes: filtration, secretion and reabsorption. All three of these processes aid in allowing the body to filter waste products from the blood while retaining nutrients, salts, and water when needed.
Filtration occur when filtrate is separated from blood in the renal corpuscle. Reabsorption is the removal of ions from the filtrate to retain salts. Secretion is the input of salts to the filtrate to eliminate them. All of these processes occur in the nephrons.
Example Question #441 : Systems Biology And Tissue Types
Which of the following is most directly responsible for concentrating urine in the kidney?
Proximal convulated tubule
Glomerulus
Loop of Henle
Bowman's capsule
Loop of Henle
The ascending and descending limbs of the Loop of Henle are responsible for creating a countercurrent multiplier system, which concentrates urine and allows water and electrolytes to passively diffuse down their concentration gradients.
All the other options are part of the nephron, but are not responsible for the process of urine concentration. The glomerulus and Bowman's capsule are responsible for collecting and producing initial filtrate from the blood, and form the renal corpuscle. The proximal convoluted tuble is the initial site of reabsorption.
Example Question #3 : Kidney And Nephron Physiology
The interaction between blood pressure and kidney function in humans requires coordination by the renin-angiotensin-aldosterone system (RAAS). This system involves the dynamic interplay of the kidneys, lungs, and blood vessels to carefully regulate sodium and water balance.
A normal human kidney has cells adjacent to the glomerulus called juxtaglomerular cells. These cells sense sodium content in urine of the distal convoluted tubule, releasing renin in response to a low level. Renin is an enzyme that converts angiotensinogen to angiotensin I (AI). AI is converted to angiotensin II (AII) by angiotensin converting enzyme (ACE) in the lung.
AII stimulates aldosterone secretion in the zona glomerulosa of the adrenal gland. Aldosterone then acts to upregulate the sodium-potassium pump on the basolateral side of distal tubule epithelial cells to increase sodium reabsorption from the urine, as well as increasing potassium excretion.
A scientist is studying a normally functioning nephron in an adult human. He examines the filtrate as it moves through the ascending limb of the loop of Henle. What observation is he most likely to make?
The filtrate becomes more concentrated as it moves up the loop because the ascending limb is permeable to salt
The filtrate becomes more concentrated as it moves up the loop because the ascending limb is permeable to water
The filtrate becomes less concentrated as it moves up the loop because the ascending limb is permeable to water
The filtrate becomes less concentrated as it moves up the loop because the ascending limb is permeable to salt
The filtrate concentration does not change as it moves up the limb
The filtrate becomes less concentrated as it moves up the loop because the ascending limb is permeable to salt
The ascending limb of the loop of Henle is permeable to salt, not water. As salt is removed from the urine, the urine becomes less concentrated. The urine will ultimately be concentrated in the collecting duct prior to excretion. The ascending limb of the loop of Henle helps to establish the salt gradient of the nephron, ensuring that water will be removed from the urine as it travels down the collecting duct, ultimately increasing the final concentration, even by decreasing the immediate concentration.
Example Question #4 : Kidney And Nephron Physiology
The interaction between blood pressure and kidney function in humans requires coordination by the renin-angiotensin-aldosterone system (RAAS). This system involves the dynamic interplay of the kidneys, lungs, and blood vessels to carefully regulate sodium and water balance.
A normal human kidney has cells adjacent to the glomerulus called juxtaglomerular cells. These cells sense sodium content in urine of the distal convoluted tubule, releasing renin in response to a low level. Renin is an enzyme that converts angiotensinogen to angiotensin I (AI). AI is converted to angiotensin II (AII) by angiotensin converting enzyme (ACE) in the lung.
AII stimulates aldosterone secretion in the zona glomerulosa of the adrenal gland. Aldosterone then acts to upregulate the sodium-potassium pump on the basolateral side of distal tubule epithelial cells to increase sodium reabsorption from the urine, as well as increasing potassium excretion.
A scientist is studying the effect of aldosterone on the distal tubule cells of a kidney. He finds that antidiuretic hormone also exerts changes on the concentration of urine produced by this kidney. Where does antidiuretic hormone exert its most potent effect?
Collecting duct
Distal tubule
Glomerulus
Proximal tubule
Thick ascending loop of Henle
Collecting duct
Antidiuretic hormone (ADH), also known as vasopressin, increases the permeability of the collecting duct to water. This allows a more concentrated urine to be excreted, because water is being lost from the urine to the kidney tissue before excretion. The gradient created by the reabsorption of ions from the loop of Henle means that the interstitium is hypertonic to the collecting duct. If the permeability of the collecting duct to water is increased, we would expect water to flow out of the collecting duct. We would expect ADH levels to increase with dehydration in order to preserve water.
Example Question #1 : Kidney And Nephron Physiology
The proximal tubule of the nephron is the primary location for the reabsorption of which of the following blood filtrates?
All of these
Sodium
Glucose
Proteins
All of these
The proximal tubule of the nephron directly follows after Bowman's capsule, and is the first site of reabsorption. Any glucose and proteins that were able to enter the filtrate are removed here via active transport. Most glucose and proteins are blocked from the filtrate by the structure of the glomerulus wall and Bowman's capsule, but those that are able to pass must be removed quickly to maintain the proper oncotic pressures in the nephron. Sodium is perhaps the most important electrolyte in the body; though large quantities of sodium may enter the filtrate, over half of it is reabsorbed in the proximal tubule.
The proximal tubule also serves as a site for reabsorption for potassium and phosphate. Other regions of the nephron closely regulate the reabsorption of bicarbonate and protons, as well as fine-tune the balance of sodium and potassium.
Example Question #1 : Excretory And Digestive Systems
The thick ascending loop of Henle is primarily responsible for what function?
Proton secretion
Water reabsorption
Sodium reabsorption
Potassium secretion
Sodium reabsorption
The thick ascending limb of the loop of Henle is impermeable to water, though sodium is actively transported out of this region. By pumping sodium out of the thick ascending limb, the urine becomes less concentrated that it was after the descending limb of the loop of Henle.
Example Question #451 : Biology
Antidiuretic hormone acts in what part of the kidney to increase water reabsorption?
Loop of Henle
Distal tubule
Proximal tubule
Collecting duct
Collecting duct
Antidiuretic hormone (vasopressin) is produced by the posterior pituitary, and is responsible for the increased rate of water reabsorption in the collecting duct of the kidney. The collecting duct serves as the last site of blood volume and blood pressure regulation before the urine flows down the kidney ureter into the bladder for excretion. The collecting duct is usually relatively impermeable to water. Action of antidiuretic hormone causes the insertion of aquaporins in the collecting duct, allowing water to exit the filtrate into the extracellular space.
Example Question #1 : Kidney And Nephron Physiology
Where in the nephron is the urine osmolarity the highest when antidiuretic hormone is not present?
Collecting duct
Descending loop of Henle
Thick ascending loop of Henle
Proximal tubule
Descending loop of Henle
Filtrate from Bowman's capsule enters the proximal tubule and flows down the descending loop of Henle, where water is reabsorbed from the tubule. Once through the descending limb of the loop, the filtrate enters the thin and thick ascending limbs of the loop of Henle, where sodium is reabsorbed, but water is not. Additional sodium can be reabsorbed in the collecting duct. Water could only be reabsorbed in the collecting duct if antidiuretic hormone were present.
We need to look for the point where sodium concentrations are the highest and water concentrations the lowest in the filtrate. This corresponds to the descending limb of the loop of Henle. At the bottom of the descending loop of Henle the filtrate is the most concentrated. Water is drawn out of the filtrate as it travels down the descending limb, but ions remain in the tubule, causing the osmolarity to increase. As the filtrate begins to ascend the loop, ions are pumped out of the filtrate, reducing the concentration again.
When antidiuretic hormone is present, higher osmolarity levels could be found in the collecting duct; however, we are told that antidiuretic hormone is not present, thus additional water will not be reabsorbed in the collecting duct.
All MCAT Biology Resources
![Learning Tools by Varsity Tutors](https://vt-vtwa-app-assets.varsitytutors.com/assets/problems/og_image_practice_problems-9cd7cd1b01009043c4576617bc620d0d5f9d58294f59b6d6556fd8365f7440cf.jpg)