All MCAT Biology Resources
Example Questions
Example Question #1 : Excretory System
The reabsorption of which of the following ions is increased by the presence of aldosterone in the distal tubule of the kidney?
Sodium
Phosphate
Calcium
Potassium
Sodium
Aldosterone acts in the distal tubule to increase the rate of sodium reabsorption by increasing the number of sodium-potassium pump proteins implanted in the cells of this region. To maintain electrical neutrality, when sodium is reabsorbed, potassium is secreted.
Too much aldosterone can thus make someone hypernatremic (high blood sodium) and hypokalemic (low blood potassium). High blood pressure results from the hypernatremia, and cardiac arrhythmias can result from the hypokalemia.
Example Question #3 : Excretory And Digestive Systems
You perform a urinalysis on a patient and the results of the test show that there is free hemoglobin in the urine sample, indicating that red blood cells have been lysed. Which part of the nephron most likely caused the lysis of red blood cells?
Collecting duct
Loop of Henle
Proximal convoluting tubule
The glomerulus
The glomerulus
The glomerulus is the capillary bed that feeds filtrate into the nephron via Bowman's capsule. Under normal circumstances, the glomerulus functions to create the urine filtrate. One of its main functions is to inhibit the filtration of red blood cells and large proteins. The glomerulus is the only part of the nephron that has any intimate contact with red blood cells. None of the other portions of the nephron will be in close proximity to red blood cells; thus, the glomerulus is the only nephron structure that could cause the lysis of red blood cells.
Example Question #461 : Biology
Which of the following would be a symptom associated with diabetes mellitus?
Increased urine volume
Less-frequent urination
More concentrated urine
Decreased urine volume
Increased urine volume
Diabetes mellitus is the product of decreased insulin effectiveness in the body. As a result, blood glucose levels are extremely high. When filtrate enters the nephron through Bowman's capsule, glucose is generally transported as well. In a healthy individual, this glucose is rapidly removed from the filtrate in the proximal convoluted tubule. In a diabetes patient, however, the level of glucose in the filtrate can overwhelm the reabsorption of the tubule, resulting in glucose in the urine. This increases urine osmolarity, causing the filtrate to retain water. The result is an increase in urine volume, resulting in more frequent urination.
Example Question #461 : Biology
Which of the following sections of the nephron does not change the osmolarity of the filtrate?
Acending loop of Henle
The distal tubule
The collecting duct
Descending loop of Henle
The proximal tubule
The proximal tubule
The purpose of the proximal tubule is to reduce the amount of filtrate in the nephron. The proximal tubule does alter the solute concentrations in the filtrate, but it does not alter the osmolarity of the filtrate. This is because the proximal tubule is where reabsorption of solutes, proteins, and glucose takes place. Meanwhile, drugs and toxins are being secreted into the filtrate. Essentially, the volume of filtrate in the proximal tubule decreases, but the filtrate remains isotonic to the blood.
Example Question #463 : Biology
The descending loop of Henle in the nephron is permeable to which of the following substances?
Potassium
Water
Sodium
All of these
Albumin
Water
The descending loop of Henle is responsible for the first step in urine concentration. Due to the high concentration of salt in the space surrounding the descending limb of the loop of Henle, water flows out of the tubule, concentrating the filtrate. The descending limb is impermeable to sodium, potassium, and albumin (the principle protein component in blood).
Example Question #14 : Kidney And Nephron Physiology
The interaction between blood pressure and kidney function in humans requires coordination by the renin-angiotensin-aldosterone system (RAAS). This system involves the dynamic interplay of the kidneys, lungs, and blood vessels to carefully regulate sodium and water balance.
A normal human kidney has cells adjacent to the glomerulus called juxtaglomerular cells. These cells sense sodium content in urine of the distal convoluted tubule, releasing renin in response to a low level. Renin is an enzyme that converts angiotensinogen to angiotensin I (AI). AI is converted to angiotensin II (AII) by angiotensin converting enzyme (ACE) in the lung.
AII stimulates aldosterone secretion in the zona glomerulosa of the adrenal gland. Aldosterone then acts to upregulate the sodium-potassium pump on the basolateral side of distal tubule epithelial cells to increase sodium reabsorption from the urine, as well as increasing potassium excretion.
A nephrologist is studying a glomerulus, and notes that it is actively filtering blood normally. Which of the following blood vessels contributes most to maintaining appropriate pressure in the glomerulus?
Unfenestrated capillaries
Arterioles
Arteries
Fenestrated capillaries
Veins
Arterioles
The glomerulus is a capillary bed. Afferent arterioles carry blood to enter the glomerulus, and efferent arterioles carry blood away from the glomerulus after filtration. Both types of arteriole are able to tighten and relax to modulate pressure within the glomerulus, driving filtration. Though fenestrated capillaries form the glomerulus itself, these vessels cannot regulate flow and pressure because they have no smooth muscle.
Example Question #451 : Systems Biology And Tissue Types
Which of the following is not a function of the kidney?
Gluconeogenesis
Maintain water balance
Excrete nitrogenous waste
Control blood pH
Gluconeogenesis
The kidney is responsible for excreting nitrogenous waste produced by the urea cycle, maintaining water balance (and thus blood pressure), maintaining salt concentrations in the blood, and controlling blood pH by excreting or retaining protons. Blood flows into the nephrons through the glomerulus and is pushed into Bowman's capsule. The filtrate then flows through the proximal tubule, the main site for most reabsorption of glucose, proteins, and electrolytes. From the proximal tubule it enters the loop of Henle, where salt and water balance is regulated via the ion gradient in the extracellular space of the renal medulla. Finally, the filtrate enters the distal tubule and collecting duct, where salt, water, and proton balance is further regulates.
The liver is responsible for gluconeogenesis and glycogen storage.
Example Question #465 : Biology
The distal tubule is responsible for secreting all of the following electrolytes except __________.
potassium ions
calcium ions
bicarbonate ions
protons
calcium ions
The distal tubule of the nephron is responsible for reabsorbing sodium and calcium and secreting potassium, hydrogen, and bicarbonate. Remember that aldosterone is responsible for increasing reabsorption of sodium and increasing excretion of potassium.
Example Question #13 : Kidney And Nephron Physiology
In a healthy individual, which of the following is filtered into the glomerular capsule in the nephron?
Glucose
White blood cells
Platelets
Hemoglobin
Red blood cells
Glucose
The glomerulus is the capillary bed of the afferent arterioles, which filter the blood and allows the nephron to concentrate waste into urine. Glucose is a sugar is filtered into the glomerular capsule. It is, however, quickly reabsorbed back into the bloodstream in the proximal convoluted tubule, and returned to the efferent arterioles. In a healthy individual, the nephron will be able to reabsorb all the glucose that gets filtered into the glomerular capsule.
Example Question #14 : Kidney And Nephron Physiology
The main function of the Loop of Henle is to __________.
reabsorb water
establish a concentration gradient
absorb sodium
secrete potassium
establish a concentration gradient
The main function of the Loop of Henle is to establish a concentration gradient so that water can be reabsorbed from the collecting duct and avoid being lost as urine. Although the ascending limb does absorb water, this water would be lost as urine if it were not for the concentration gradient established in the medulla of the kidney. Neither sodium nor potassium is absorbed in the Loop of Henle.
All MCAT Biology Resources
![Learning Tools by Varsity Tutors](https://vt-vtwa-app-assets.varsitytutors.com/assets/problems/og_image_practice_problems-9cd7cd1b01009043c4576617bc620d0d5f9d58294f59b6d6556fd8365f7440cf.jpg)