All PSAT Math Resources
Example Questions
Example Question #26 : Quadratic Equations
If then which of the following is a possible value for
?
Since ,
.
Thus
Of these two, only 4 is a possible answer.
Example Question #21 : Quadratic Equations
Find all real solutions to the equation.
To solve by factoring, we need two numbers that add to and multiply to
.
In order for the equation to equal zero, one of the terms must be equal to zero.
OR
Our final answer is that .
Example Question #181 : Algebra
How many real solutions are there for the following equation?
The first thing to notice is that you have powers with a regular sequence. This means you can simply treat it like a quadratic equation. You are then able to factor it as follows:
The factoring can quickly be done by noticing that the 14 must be either or
. Because it is negative, one constant will be negative and the other positive. Finally, since the difference between 14 and 1 cannot be 5, it must be 7 and 2.
Alternatively, one could use the quadratic formula.
The end result is that you have:
The latter of these two gives only complex answers, so there are two real answers.
Example Question #31 : Quadratic Equations
The formula to solve a quadratic expression is:
All of the following equations have real solutions EXCEPT:
We can use the quadratic formula to find the solutions to quadratic equations in the form ax2 + bx + c = 0. The quadratic formula is given below.
In order for the formula to give us real solutions, the value under the square root, b2 – 4ac, must be greater than or equal to zero. Otherwise, the formula will require us to find the square root of a negative number, which gives an imaginary (non-real) result.
In other words, we need to look at each equation and determine the value of b2 – 4ac. If the value of b2 – 4ac is negative, then this equation will not have real solutions.
Let's look at the equation 2x2 – 4x + 5 = 0 and determine the value of b2 – 4ac.
b2 – 4ac = (–4)2 – 4(2)(5) = 16 – 40 = –24 < 0
Because the value of b2 – 4ac is less than zero, this equation will not have real solutions. Our answer will be 2x2 – 4x + 5 = 0.
If we inspect all of the other answer choices, we will find positive values for b2 – 4ac, and thus these other equations will have real solutions.
Example Question #183 : Algebra
Let , and let
. What is the sum of the possible values of
such that
.
We are told that f(x) = x2 - 4x + 2, and g(x) = 6 - x. Let's find expressions for f(k) and g(k).
f(k) = k2 – 4k + 2
g(k) = 6 – k
Now, we can set these expressions equal.
f(k) = g(k)
k2 – 4k +2 = 6 – k
Add k to both sides.
k2 – 3k + 2 = 6
Then subtract 6 from both sides.
k2 – 3k – 4 = 0
Factor the quadratic equation. We must think of two numbers that multiply to give us -4 and that add to give us -3. These two numbers are –4 and 1.
(k – 4)(k + 1) = 0
Now we set each factor equal to 0 and solve for k.
k – 4 = 0
k = 4
k + 1 = 0
k = –1
The two possible values of k are -1 and 4. The question asks us to find their sum, which is 3.
The answer is 3.
Example Question #21 : How To Find The Solution To A Quadratic Equation
Note: Figure NOT drawn to scale.
Refer to the above diagram, which shows Rectangle with
.
is the midpoint of
;
;
Evaluate (to the nearest tenth, if applicable).
Insufficient information is given to answer the question.
The corresponding sides of similar triangles are in proportion, so we can set up and solve the proportion statement for :
, so
For the sake of simplicuty, we will let
Since is the midpoint of
,
.
Also, .
The proportion statement becomes
Solve for using cross-products:
By the quadratic equation, setting :
There are two possibilities:
or
is divided into segments of length 2.9 and 17.1. The lesser is the length of
, so the correct choice is 2.9.
Example Question #21 : How To Find The Solution To A Quadratic Equation
Solve for :
Begin by distributing the three on the right side of the equation:
Next combine your like terms by subtracting from both sides to give you
Next, subtract 9 from both sides to give you . To solve for
, now take the square root of both sides. This gives you the answer,
Example Question #1 : Quadratic Equations
Solve: x2+6x+9=0
6
9
3
-3
12
-3
Given a quadratic equation equal to zero you can factor the equation and set each factor equal to zero. To factor you have to find two numbers that multiply to make 9 and add to make 6. The number is 3. So the factored form of the problem is (x+3)(x+3)=0. This statement is true only when x+3=0. Solving for x gives x=-3. Since this problem is multiple choice, you could also plug the given answers into the equation to see which one works.
Example Question #2 : Quadratic Equations
64x2 + 24x - 10 = 0
Solve for x
64x2 + 24x - 10 = 0
Factor the equation:
(8x + 5)(8x – 2) = 0
Set each side equal to zero
(8x + 5) = 0
x = -5/8
(8x – 2) = 0
x = 2/8 = 1/4
Example Question #1 : Quadratic Equations
All of the following functions have a exactly one root EXCEPT:
f(x) = 4x2 – 4x+1
f(x) = (–1/9)x2 + 6x – 81
f(x) = x2 – 2x + 1
f(x) = (1/4)x2 + x + 1
f(x) = 9x2 – 6x + 4
f(x) = 9x2 – 6x + 4
The roots of an equation are the points at which the function equals zero. We can set each function equal to zero and determine which functions have one root, and which does not.
Another piece of information will help. If a quadratic function has one root, then it must be a perfect square. This is because a quadratic function that is a perfect square can be written in the form (x – a)2. If we set (x – a)2 = 0 in order to find the root, we see that a is the only value that solves the equation, and thus a is the only root. Additionally, a quadratic equation is a perfect square if it can be written in the form a2x2 + 2abx + b2 = (ax + b)2.
Let's examine the choice f(x) = 4x2 – 4x+1. To find the roots, we set f(x) = 0.
4x2 – 4x+1 = 0
We notice that 4x2 - 4x + 1 is a perfect square, since we could write it as (2x – 1)2. Thus, this equation has only one root, and it can't be the answer.
If we look at f(x) = x2 –2x + 1, we see that x2 – 2x + 1 is also a perfect square, because it could be written as (x – 1)2. This function also has a single root.
Next, we examine f(x) = (1/4)x2 + x + 1. Let us set f(x) = (1/4)x2 + x + 1 = 0.
(1/4)x2 + x + 1 = 0
We can multiply both sides by four to get rid of the fraction.
x2 + 4x + 4 = 0
(x + 2)2 = 0
This function is also a perfect square and has a single root.
Now consider the choice f(x) = (–1/9)x2 + 6x – 81.
f(x) = (–1/9)x2 + 6x – 81 = 0
Multiply both sides by –9.
x2 – 54x + 729 = 0
(x – 27)2 = 0.
Finally, let's look at f(x) = 9x2 – 6x + 4. This CANNOT be written as a perfect square, because it is not in the form a2x2 + 2abx + b2 = (ax + b)2. It might be tempting to think that 9x2 - 6x + 4 = (3x - 2)2, but it does NOT, because (3x – 2)2 = 9x2 – 12x + 4. Therefore, because 9x2 – 6x + 4 is not a perfect square, it doesn't have exactly one root.
Certified Tutor
All PSAT Math Resources
![Learning Tools by Varsity Tutors](https://vt-vtwa-app-assets.varsitytutors.com/assets/problems/og_image_practice_problems-9cd7cd1b01009043c4576617bc620d0d5f9d58294f59b6d6556fd8365f7440cf.jpg)