All PSAT Math Resources
Example Questions
Example Question #1 : Squaring / Square Roots / Radicals
According to Heron's Formula, the area of a triangle with side lengths of a, b, and c is given by the following:
where s is one-half of the triangle's perimeter.
What is the area of a triangle with side lengths of 6, 10, and 12 units?
48√77
4√14
8√14
14√2
12√5
8√14
We can use Heron's formula to find the area of the triangle. We can let a = 6, b = 10, and c = 12.
In order to find s, we need to find one half of the perimeter. The perimeter is the sum of the lengths of the sides of the triangle.
Perimeter = a + b + c = 6 + 10 + 12 = 28
In order to find s, we must multiply the perimeter by one-half, which would give us (1/2)(28), or 14.
Now that we have a, b, c, and s, we can calculate the area using Heron's formula.
Example Question #1 : How To Factor A Common Factor Out Of Squares
Simplify the radical expression.
Look for perfect cubes within each term. This will allow us to factor out of the radical.
Simplify.
Example Question #2 : Squaring / Square Roots / Radicals
Simplify the expression.
Use the distributive property for radicals.
Multiply all terms by .
Combine terms under radicals.
Look for perfect square factors under each radical. has a perfect square of
. The
can be factored out.
Since both radicals are the same, we can add them.
Example Question #1 : How To Divide Complex Numbers
Simplify by rationalizing the denominator:
Multiply both numerator and denominator by :
Example Question #1 : How To Divide Complex Numbers
Divide:
Rewrite in fraction form, and multiply both numerator and denominator by :
Example Question #2 : Complex Numbers
Simplify by rationalizing the denominator:
Multiply both numerator and denominator by :
Example Question #3 : How To Divide Complex Numbers
Simplify by rationalizing the denominator:
Multiply the numerator and the denominator by the complex conjugate of the denominator, which is :
Example Question #2 : How To Divide Complex Numbers
Simplify by rationalizing the denominator:
Multiply the numerator and the denominator by the complex conjugate of the denominator, which is :
Example Question #72 : Exponents
Simplify by rationalizing the denominator:
Multiply the numerator and the denominator by the complex conjugate of the denominator, which is :
Example Question #511 : Algebra
Define an operation as follows:
For all complex numbers ,
.
Evaluate .
Multiply the numerator and the denominator by the complex conjugate of the denominator, which is . The above becomes:
Certified Tutor
All PSAT Math Resources
![Learning Tools by Varsity Tutors](https://vt-vtwa-app-assets.varsitytutors.com/assets/problems/og_image_practice_problems-9cd7cd1b01009043c4576617bc620d0d5f9d58294f59b6d6556fd8365f7440cf.jpg)