SAT II Math I : SAT Subject Test in Math I

Study concepts, example questions & explanations for SAT II Math I

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Quadratic Inequalities

Solve:

Possible Answers:

Correct answer:

Explanation:

Start by changing the less than sign to an equal sign and solve for .

Now, plot these two numbers on a number line.

4

Notice how the number line is divided into three regions:

Now, choose a number fromeach of these regions to plug back into the inequality to test if the inequality holds.

For , let 

Since this number is not less than zero, the solution cannot be found in this region.

For , let 

Since this number is less than zero, the solution can be found in this region.

For  let .

Since this number is not less than zero, the solution cannot be found in this region.

Because the solution is only negative in the interval , that must be the solution.

 

Example Question #10 : Quadratic Inequalities

Which value for  would satisfy the inequality ?

Possible Answers:

Not enough information to solve

Correct answer:

Explanation:

First, we can factor the quadratic to give us a better understanding of its graph. Factoring gives us: . Now we know that the quadratic has zeros at  and . Furthermore this information reveals that the quadratic is positive. Using this information, we can sketch a graph like this: 

Sketch inequality

We can see that the parabola is below the x-axis (in other words, less than ) between these two zeros  and .

The only x-value satisfying the inequality  is .

The value of  would work if the inequality were inclusive, but since it is strictly less than instead of less than or equal to , that value will not work.

Example Question #1 : Solving Other Functions

Simplify:

You may assume that  is a nonnegative real number.

Possible Answers:

Correct answer:

Explanation:

The best way to simplify a radical within a radical is to rewrite each root as a fractional exponent, then convert back.

First, rewrite the roots as exponents.

Multiply the exponents, per the power of a power rule:

Example Question #1 : Solving Other Functions

Define functions  and .

 for exactly one value of  on the interval .

Which of the following statements is correct about ?

Possible Answers:

Correct answer:

Explanation:

Define 

Then if ,

it follows that

,

or, equivalently,

.

By the Intermediate Value Theorem (IVT), if  is a continuous function, and  and  are of unlike sign, then  for some . As a polynomial,  is a continuous function, so the IVT applies here.

Evaluate  for each of the following values: :

Only in the case of  does it hold that  assumes a different sign at both endpoints - . By the IVT, , and , for some .

Example Question #1 : Graphing Linear Functions

Line

Refer to the above red line. A line is drawn perpendicular to that line, and with the same -intercept.  Give the equation of that line in slope-intercept form.

Possible Answers:

Correct answer:

Explanation:

First, we need to find the slope of the above line. 

The slope of a line. given two points  can be calculated using the slope formula

Set :

 

The slope of a line perpendicular to it has as its slope the opposite of the reciprocal of 2, which would be . Since we want this line to have the same -intercept as the first line, which is the point , we can substitute  and  in the slope-intercept form:

Example Question #402 : Sat Subject Test In Math I

Axes

Refer to the above diagram. If the red line passes through the point , what is the value of ?

Possible Answers:

Correct answer:

Explanation:

One way to answer this is to first find the equation of the line. 

The slope of a line. given two points  can be calculated using the slope formula

Set :

The line has slope 3 and -intercept , so we can substitute  in the slope-intercept form:

Now substitute 4 for  and  for  and solve for :

Example Question #111 : Functions And Graphs

Screenshot_from_2014-03-27_16_11_40

Which equation best matches the graph of the line shown above?

Possible Answers:

Correct answer:

Explanation:

To find an equation of a line, we will always need to know the slope of that line -- and to find the slope, we need at least two points. It looks like we have (0, -3) and (12,0), which we'll call point 1 and point 2, respectively.

Now we need to plug in a point on the line into an equation for a line. We can use either slope-intercept form or point-slope form, but since the answer choices are in point-slope form, let's use that.

Unfortunately, that's not one of the answer choices. That's because we didn't pick the same point to substitute into our equation as the answer choices did. But we can see if any of the answer choices are equivalent to what we found. Our equation is equal to:

which is the slope-intercept form of the line. We have to put all the other answer choices into slope-intercept to see if they match. The only one that works is this one:

Example Question #2 : Graphing Linear Functions

Determine where the graphs of the following equations will intersect.

Possible Answers:

Correct answer:

Explanation:

We can solve the system of equations using the substitution method.

Solve for  in the second equation.

Substitute this value of  into the first equation.

Now we can solve for .

Solve for  using the first equation with this new value of .

The solution is the ordered pair .

 

Example Question #1 : Graphing Linear Functions

Axes_1

Refer to the line in the above diagram. It we were to continue to draw it so that it intersects the -axis, where would its -intercept be?

Possible Answers:

Correct answer:

Explanation:

First, we need to find the slope of the line.

In order to move from the lower left point to the upper right point, it is necessary to move up five units and right three units. This is a rise of 5 and a run of 3. makes the slope of the line shown .

We can use this to find the -intercept  using the slope formula as follows:

The lower left point has coordinates . Therefore, we can set up and solve for  in this slope formula, setting :

 

Example Question #1 : Graphing Linear Functions

Line  includes the points  and . Line  includes the points  and . Which of the following statements is true of these lines?

Possible Answers:

The lines are distinct but neither parallel nor perpendicular.

The lines are parallel.

The lines are perpendicular.

Insufficient information is given to answer this question.

The lines are identical.

Correct answer:

The lines are parallel.

Explanation:

We calculate the slopes of the lines using the slope formula.

The slope of line  is 

The slope of line  is 

The lines have the same slope, making them either parallel or identical.

Since the slope of each line is 0, both lines are horizontal, and the equation of each takes the form , where  is the -coordinate of each point on the line. Therefore, line  and line  have equations  and .This makes them parallel lines.

Learning Tools by Varsity Tutors