All SAT II Math I Resources
Example Questions
Example Question #941 : Algebra Ii
Find the vertex form of the following quadratic equation:
Factor 2 as GCF from the first two terms giving us:
Now we complete the square by adding 4 to the expression inside the parenthesis and subtracting 8 ( because ) resulting in the following equation:
which is equal to
Hence the vertex is located at
Example Question #1 : Understanding Parabolic Functions
Purple line
None of them
Green line
Red line
Blue line
Red line
A parabola is one example of a quadratic function, regardless of whether it points upwards or downwards.
The red line represents a quadratic function and will have a formula similar to .
The blue line represents a linear function and will have a formula similar to .
The green line represents an exponential function and will have a formula similar to .
The purple line represents an absolute value function and will have a formula similar to .
Example Question #5 : Graphing Parabolas
Which of the following parabolas is downward facing?
We can determine if a parabola is upward or downward facing by looking at the coefficient of the term. It will be downward facing if and only if this coefficient is negative. Be careful about the answer choice . Recall that this means that the entire value inside the parentheses will be squared. And, a negative times a negative yields a positive. Thus, this is equivalent to . Therefore, our answer has to be .
Example Question #1 : Graphing Parabolas
What is the vertex of the function ? Is it a maximum or minimum?
; minimum
; minimum
; maximum
; maximum
; minimum
The equation of a parabola can be written in vertex form: .
The point in this format is the vertex. If is a postive number the vertex is a minimum, and if is a negative number the vertex is a maximum.
In this example, . The positive value means the vertex is a minimum.
Example Question #8 : Graphing Quadratic Functions
How many points of intersection could two distinct quadratic functions have?
.
.
.
only
and
, , and
only
and
, , and
An intersection of two functions is a point they share in common. A diagram can show all the possible solutions:
Notice that:
and intersect times
and intersect time
and intersect times
The diagram shows that , , and are all possible.
Example Question #21 : Graphing Functions
Which of the following graphs matches the function ?
Start by visualizing the graph associated with the function :
Terms within the parentheses associated with the squared x-variable will shift the parabola horizontally, while terms outside of the parentheses will shift the parabola vertically. In the provided equation, 2 is located outside of the parentheses and is subtracted from the terms located within the parentheses; therefore, the parabola in the graph will shift down by 2 units. A simplified graph of looks like this:
Remember that there is also a term within the parentheses. Within the parentheses, 1 is subtracted from the x-variable; thus, the parabola in the graph will shift to the right by 1 unit. As a result, the following graph matches the given function :
Example Question #21 : Graphing Functions
Simplify the following expression:
To simplify, we must first simplify the absolute values.
Now, combine like terms:
Example Question #22 : Graphing Functions
Where does cross the axis?
3
-7
5
7
-3
7
crosses the axis when equals 0. So, substitute in 0 for :
Example Question #23 : Graphing Functions
Which of the following is an equation for the above parabola?
The zeros of the parabola are at and , so when placed into the formula
,
each of their signs is reversed to end up with the correct sign in the answer. The coefficient can be found by plugging in any easily-identifiable, non-zero point to the above formula. For example, we can plug in which gives
Example Question #1 : Graphing Polynomial Functions
Which equation best represents the following graph?
None of these
We have the following answer choices.
The first equation is a cubic function, which produces a function similar to the graph. The second equation is quadratic and thus, a parabola. The graph does not look like a prabola, so the 2nd equation will be incorrect. The third equation describes a line, but the graph is not linear; the third equation is incorrect. The fourth equation is incorrect because it is an exponential, and the graph is not an exponential. So that leaves the first equation as the best possible choice.
Certified Tutor