All SAT Math Resources
Example Questions
Example Question #2 : Complex Numbers
An arithmetic sequence begins as follows:
Give the next term of the sequence
The common difference of an arithmetic sequence can be found by subtracting the first term from the second:
Add this to the second term to obtain the desired third term:
.
Example Question #1 : Complex Numbers
Simplify:
It can be easier to line real and imaginary parts vertically to keep things organized, but in essence, combine like terms (where 'like' here means real or imaginary):
Example Question #201 : New Sat
For , what is the sum of
and its complex conjugate?
The complex conjugate of a complex number is
, so
has
as its complex conjugate. The sum of the two numbers is
Example Question #3 : How To Add Complex Numbers
Evaluate:
None of these
A power of can be evaluated by dividing the exponent by 4 and noting the remainder. The power is determined according to the following table:
, so
, so
, so
, so
Substituting:
Collect real and imaginary terms:
Example Question #592 : Algebra
Evaluate:
A power of can be evaluated by dividing the exponent by 4 and noting the remainder. The power is determined according to the following table:
, so
, so
, so
, so
Substituting:
Example Question #11 : Complex Numbers
For which of the following values of is the value of
least?
is the same as
, which means that the bigger the answer to
is, the smaller the fraction will be.
Therefore, is the correct answer because
.
Example Question #2 : How To Divide Complex Numbers
Define an operation so that for any two complex numbers
and
:
Evaluate .
, so
Rationalize the denominator by multiplying both numerator and denominator by the complex conjugate of the latter, which is :
Example Question #602 : Algebra
Define an operation such that, for any complex number
,
If , then evaluate
.
, so
, so
, and
Rationalize the denominator by multiplying both numerator and denominator by the complex conjugate of the latter, which is :
Example Question #3 : How To Divide Complex Numbers
Define an operation as follows:
For any two complex numbers and
,
Evaluate .
, so
We can simplify each expression separately by rationalizing the denominators.
Therefore,
Example Question #1 : How To Divide Complex Numbers
Define an operation so that for any two complex numbers
and
:
Evaluate
, so
Rationalize the denominator by multiplying both numerator and denominator by the complex conjugate of the latter, which is :
All SAT Math Resources
