SSAT Elementary Level Math : How to find the area of a rectangle

Study concepts, example questions & explanations for SSAT Elementary Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #172 : Measurement & Data

What is the length of a rectangular yard with an area of \displaystyle 28m^2 and a width of \displaystyle 4m?

 

Possible Answers:

\displaystyle 8m

\displaystyle 4m

\displaystyle 6m

\displaystyle 5m

\displaystyle 7m

Correct answer:

\displaystyle 7m

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 28=l\times 4

\displaystyle \frac{28}{4}=\frac{l\times 4}{4}

\displaystyle 7=l

Example Question #352 : Geometry

What is the length of a rectangular yard with an area of \displaystyle 30m^2 and a width of \displaystyle 5m?

 

Possible Answers:

\displaystyle 3m

\displaystyle 5m

\displaystyle 4m

\displaystyle 2m

\displaystyle 6m

Correct answer:

\displaystyle 6m

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 30=l\times 5

\displaystyle \frac{30}{5}=\frac{l\times 5}{5}

\displaystyle 6=l

Example Question #1361 : Common Core Math: Grade 4

What is the length of a rectangular yard with an area of \displaystyle 32m^2 and a width of \displaystyle 4m?

 

Possible Answers:

\displaystyle 8m

\displaystyle 12m

\displaystyle 10m

\displaystyle 13m

\displaystyle 9m

Correct answer:

\displaystyle 8m

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 32=l\times 4

\displaystyle \frac{32}{4}=\frac{l\times 4}{4}

\displaystyle 8=l

Example Question #1362 : Common Core Math: Grade 4

What is the length of a rectangular yard with an area of \displaystyle 33m^2 and a width of \displaystyle 3m?

 

Possible Answers:

\displaystyle 11m

\displaystyle 10m

\displaystyle 12m

\displaystyle 8m

\displaystyle 9m

Correct answer:

\displaystyle 11m

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 33=l\times 3

\displaystyle \frac{33}{3}=\frac{l\times 3}{3}

\displaystyle 11=l

Example Question #1363 : Common Core Math: Grade 4

What is the length of a rectangular yard with an area of \displaystyle 35m^2 and a width of \displaystyle 5m?

 

Possible Answers:

\displaystyle 8m

\displaystyle 11m

\displaystyle 9m

\displaystyle 10m

\displaystyle 7m

Correct answer:

\displaystyle 7m

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 35=l\times 5

\displaystyle \frac{35}{5}=\frac{l\times 5}{5}

\displaystyle 7=l

Example Question #1364 : Common Core Math: Grade 4

What is the length of a rectangular yard with an area of \displaystyle 36m^2 and a width of \displaystyle 4m?

 

Possible Answers:

\displaystyle 8m

\displaystyle 11m

\displaystyle 9m

\displaystyle 12m

\displaystyle 10m

Correct answer:

\displaystyle 9m

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 36=l\times 4

\displaystyle \frac{36}{4}=\frac{l\times 4}{4}

\displaystyle 9=l

Example Question #61 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

What is the length of a rectangular yard with an area of \displaystyle 36m^2 and a width of \displaystyle 3m?

 

Possible Answers:

\displaystyle 11m

\displaystyle 12m

\displaystyle 10m

\displaystyle 14m

\displaystyle 13m

Correct answer:

\displaystyle 12m

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 36=l\times 3

\displaystyle \frac{36}{3}=\frac{l\times 3}{3}

\displaystyle 12=l

Example Question #62 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

What is the length of a rectangular yard with an area of \displaystyle 14m^2 and a width of \displaystyle 2m?

 

Possible Answers:

\displaystyle 8m

\displaystyle 7m

\displaystyle 6m

\displaystyle 5m

\displaystyle 4m

Correct answer:

\displaystyle 7m

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 14=l\times 2

\displaystyle \frac{14}{2}=\frac{l\times 2}{2}

\displaystyle 7=l

Example Question #601 : Isee Middle Level (Grades 7 8) Quantitative Reasoning

What is the length of a rectangular yard with an area of \displaystyle 16m^2 and a width of \displaystyle 8m?

 

Possible Answers:

\displaystyle 5m

\displaystyle 4m

\displaystyle 6m

\displaystyle 2m

\displaystyle 3m

Correct answer:

\displaystyle 2m

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 16=l\times 8

\displaystyle \frac{16}{8}=\frac{l\times 8}{8}

\displaystyle 2=l

Example Question #63 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

What is the length of a rectangular yard with an area of \displaystyle 24m^2 and a width of \displaystyle 3m?

 

Possible Answers:

\displaystyle 4m

\displaystyle 6m

\displaystyle 7m

\displaystyle 8m

\displaystyle 5m

Correct answer:

\displaystyle 8m

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 24=l\times 3

\displaystyle \frac{24}{3}=\frac{l\times 3}{3}

\displaystyle 8=l

Learning Tools by Varsity Tutors