Algebra II : Algebra II

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #13 : Solving Expressions

Evaluate the expression \displaystyle x^{y}-z^{x}+x^{z} when \displaystyle x=2\displaystyle y=3, and \displaystyle z=4.

Possible Answers:

\displaystyle 8

\displaystyle -12

\displaystyle 12

\displaystyle 16

\displaystyle -16

Correct answer:

\displaystyle 8

Explanation:

First, substitute \displaystyle 2 for \displaystyle x\displaystyle 3 for \displaystyle y, and \displaystyle 4 for \displaystyle 7\displaystyle (2)^{3}-(4)^{2}+(2)^{4}

Now, using the order of operations (Parentheses, Exponents, Multiplication, Division, Addittion, Subtraction), begin to simplify the expression:

\displaystyle 8-16+16

Leaving you with,

\displaystyle 8

Example Question #181 : Basic Single Variable Algebra

Evaluate the expression \displaystyle x(a+b)-x^{a} when \displaystyle a=2\displaystyle b=10, and \displaystyle x=3.

Possible Answers:

\displaystyle 27

\displaystyle 36

\displaystyle 21

\displaystyle 43

\displaystyle 16

Correct answer:

\displaystyle 27

Explanation:

First, substitute \displaystyle 2 for \displaystyle a\displaystyle 10 for \displaystyle b, and \displaystyle 3 for \displaystyle x\displaystyle (3)(2+10)-(3)^{2}

Now, using the order of operations (Parentheses, Exponents, Multiplication, Division, Addittion, Subtraction), begin to simplify the expression:

\displaystyle (3)(12)-(9)

\displaystyle 36-9

Leaving you with,

\displaystyle 27

Example Question #131 : Expressions

Evaluate the expression \displaystyle 14-2c+d^{2}-c^{2} given \displaystyle c=12 and \displaystyle d=11.

Possible Answers:

\displaystyle 56

\displaystyle -56

\displaystyle 33

\displaystyle -33

\displaystyle -92

Correct answer:

\displaystyle -33

Explanation:

First, substitute \displaystyle 12 for \displaystyle c and \displaystyle 11 for \displaystyle d\displaystyle 14-2(12)+(11)^{2}-(12)^{2}

Now, using the order of operations (Parentheses, Exponents, Multiplication, Division, Addittion, Subtraction), begin to simplify the expression:

\displaystyle 14-2(12)+(121)-(144)

\displaystyle 14-24+121-144

Leaving you with,

\displaystyle -33

 

Example Question #131 : Expressions

Evaluate the expression \displaystyle 5y+x^{2}(x-7) when \displaystyle x=8 and \displaystyle y=11.

Possible Answers:

\displaystyle 95

\displaystyle 117

\displaystyle 94

\displaystyle 121

\displaystyle 119

Correct answer:

\displaystyle 119

Explanation:

First, substitute \displaystyle 8 for \displaystyle x and \displaystyle 11 for \displaystyle y\displaystyle 5(11)+(8)^{2}((8)-7)

Now, using the order of operations (Parentheses, Exponents, Multiplication, Division, Addittion, Subtraction), begin to simplify the expression:

\displaystyle 5(11)+(64)(1)

\displaystyle 55+64

Leaving you with,

\displaystyle 119

Example Question #2025 : Algebra Ii

Evaluate the expression \displaystyle b^{4}+3a-9 when \displaystyle a=6 and \displaystyle b=5.

Possible Answers:

\displaystyle 423

\displaystyle 634

\displaystyle 566

\displaystyle 285

\displaystyle 709

Correct answer:

\displaystyle 634

Explanation:

First, you subsitute \displaystyle 6 for \displaystyle a and \displaystyle 5 for \displaystyle b\displaystyle (5)^{4}+3(6)-9

Now, using the order of operations (Parentheses, Exponents, Multiplication, Division, Addittion, Subtraction), begin to simplify the expression:

\displaystyle 625+3(6)-9

\displaystyle 625+18-9

Leaving you with,

\displaystyle 634 

Example Question #132 : Expressions

If \displaystyle f(x)= 2x^2+1 and \displaystyle g(x)=x-3, what is \displaystyle f(g(2))?

Possible Answers:

\displaystyle 9

\displaystyle -1

\displaystyle 6

\displaystyle 1

\displaystyle 3

Correct answer:

\displaystyle 3

Explanation:

To begin solving, first we would plug \displaystyle 2 in to \displaystyle g(x) for every \displaystyle x there is, making it:

\displaystyle g(2)=(2)-3

Solving, we get:

\displaystyle g(2)=-1

We would then put that solution into \displaystyle f(x) for every \displaystyle x there is, making it:

\displaystyle f(g(2))=2(-1)^{2}+1

Following the order of operations, the first thing we do is square \displaystyle -1:

\displaystyle -1 \times -1 = 1

We can then solve the rest of the expression:

\displaystyle f(g(2))=2(1)+1

\displaystyle f(g(2))=3

Example Question #141 : Expressions

Solve the expression:  \displaystyle -6(x-6)^2-3x+2

Possible Answers:

\displaystyle -6x^2-69x+214

\displaystyle -6x^2+69x-216

\displaystyle -6x^2+69x-214

\displaystyle -6x^2+69x-218

\displaystyle -6x^2-75x+218

Correct answer:

\displaystyle -6x^2+69x-214

Explanation:

Evaluate the binomial squared first by order of operations.

\displaystyle (x-6)^2 = (x-6)(x-6)

\displaystyle = x(x)+(x)(-6)+(-6)(x)+(-6)(-6)

\displaystyle x^2-12x+36

The expression becomes:

\displaystyle -6(x^2-12x+36)-3x+2

Distribute the negative six through each term of the trinomial.

\displaystyle -6x^2+72x-216-3x+2

Combine like-terms.

The answer is:  \displaystyle -6x^2+69x-214

Example Question #2022 : Algebra Ii

Solve the expression if \displaystyle a=3:  \displaystyle 6a(a^2-a^3)

Possible Answers:

\displaystyle 648

\displaystyle -324

\displaystyle 324

\displaystyle -648

\displaystyle -162

Correct answer:

\displaystyle -324

Explanation:

Substitute the value of \displaystyle a into the given expression.

\displaystyle 6(3)((3)^2-(3)^3)

Simplify the parentheses by order of operations. 

\displaystyle 18(9-27) = 18(-18) = -324

The answer is:  \displaystyle -324

Example Question #2023 : Algebra Ii

If \displaystyle a=5 and \displaystyle b=6, evaluate:  \displaystyle \frac{1}{b}-\frac{b}{a}

Possible Answers:

\displaystyle -\frac{31}{30}

\displaystyle -\frac{19}{30}

\displaystyle -\frac{29}{30}

\displaystyle -\frac{41}{30}

\displaystyle -\frac{2}{5}

Correct answer:

\displaystyle -\frac{31}{30}

Explanation:

Substitute the assigned values into the expression.

\displaystyle \frac{1}{b}-\frac{b}{a} = \frac{1}{6}-\frac{6}{5}

Convert the fractions to a common denominator.

\displaystyle \frac{1}{6}-\frac{6}{5} = \frac{1(5)}{6(5)}-\frac{6(6)}{5(6)} = \frac{5}{30}- \frac{36}{30}

Now that the denominators are common, the numerators can be subtracted.

The answer is:  \displaystyle -\frac{31}{30}

Example Question #184 : Basic Single Variable Algebra

If \displaystyle a=4 and \displaystyle b=6, determine:  \displaystyle a(2-b)-a

Possible Answers:

\displaystyle -24

\displaystyle -18

\displaystyle -20

\displaystyle -12

\displaystyle -16

Correct answer:

\displaystyle -20

Explanation:

Substitute the values into the expression.

\displaystyle a(2-b)-a = 4(2-6)-4

Simplify the expression by distribution.

\displaystyle 4(2-6)-4 = 4(-4)-4 = -16-4 = -20

The answer is:  \displaystyle -20

Learning Tools by Varsity Tutors