Common Core: 5th Grade Math : Common Core Math: Grade 5

Study concepts, example questions & explanations for Common Core: 5th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Explain Patterns When Multiplying By A Power Of 10: Ccss.Math.Content.5.Nbt.A.2

\(\displaystyle 34\times 10=\)

\(\displaystyle 3.4\times 10=\)

\(\displaystyle .34\times 10=\)

Possible Answers:

\(\displaystyle 34\times 10=3400,\ 3.4\times 10=34,\ .34\times 10=3.4\)

\(\displaystyle 34\times 10=340,\ 3.4\times 10=.34,\ .34\times 10=.034\)

\(\displaystyle 34\times 10=3400,\ 3.4\times 10=340,\ .34\times 10=34\)

\(\displaystyle 34\times 10=340,\ 3.4\times 10=34,\ .34\times 10=.034\)

\(\displaystyle 34\times 10=340,\ 3.4\times 10=34,\ .34\times 10=3.4\)

Correct answer:

\(\displaystyle 34\times 10=340,\ 3.4\times 10=34,\ .34\times 10=3.4\)

Explanation:

 

 

 

Example Question #2 : Explain Patterns When Multiplying By A Power Of 10: Ccss.Math.Content.5.Nbt.A.2

What is \(\displaystyle 4.4\times10^7\) in standard form? 

Possible Answers:

\(\displaystyle 440\)

\(\displaystyle 4\textup,000\textup,000\)

\(\displaystyle 40\textup,000\textup,000\)

\(\displaystyle 44\)

\(\displaystyle 44\textup,000\textup,000\)

Correct answer:

\(\displaystyle 44\textup,000\textup,000\)

Explanation:

The power of \(\displaystyle 10\) tells us how to move our decimal. Because we have a positive \(\displaystyle 7\) power, we move our decimal over \(\displaystyle 7\) places to the right. 

\(\displaystyle 4.4\rightarrow 44000000.\)

Example Question #1 : Explain Patterns When Multiplying By A Power Of 10: Ccss.Math.Content.5.Nbt.A.2

What is \(\displaystyle 4.6\times10^3\) in standard form? 

Possible Answers:

\(\displaystyle 4\textup,600\)

\(\displaystyle 46\textup,000\)

\(\displaystyle 40\textup,600\)

\(\displaystyle 46\)

\(\displaystyle 460\)

Correct answer:

\(\displaystyle 4\textup,600\)

Explanation:

The power of \(\displaystyle 10\) tells us how to move our decimal. Because we have a positive \(\displaystyle 3\) power, we move our decimal over \(\displaystyle 3\) places to the right. 

\(\displaystyle 4.6\rightarrow 4600.\)

Example Question #2 : Explain Patterns When Multiplying By A Power Of 10: Ccss.Math.Content.5.Nbt.A.2

What is \(\displaystyle 3.4\times10^3\) in standard form? 

Possible Answers:

\(\displaystyle 34\)

\(\displaystyle 340\textup,000\)

\(\displaystyle 34\textup,000\)

\(\displaystyle 3\textup,400\)

\(\displaystyle 340\)

Correct answer:

\(\displaystyle 3\textup,400\)

Explanation:

The power of \(\displaystyle 10\) tells us how to move our decimal. Because we have a positive \(\displaystyle 3\) power, we move our decimal over \(\displaystyle 3\) places to the right. 

\(\displaystyle 3.4\rightarrow 3400.\)

Example Question #2 : Explain Patterns When Multiplying By A Power Of 10: Ccss.Math.Content.5.Nbt.A.2

What is \(\displaystyle 1\times10^2\) in standard form? 

Possible Answers:

\(\displaystyle 100\)

\(\displaystyle 11\textup,000\)

\(\displaystyle 10\)

\(\displaystyle 1\textup,000\)

\(\displaystyle 10\textup,000\)

Correct answer:

\(\displaystyle 100\)

Explanation:

The power of \(\displaystyle 10\) tells us how to move our decimal. Because we have a positive \(\displaystyle 2\) power, we move our decimal over \(\displaystyle 2\) places to the right. 

\(\displaystyle 1.\rightarrow 100.\)

Example Question #3 : Explain Patterns When Multiplying By A Power Of 10: Ccss.Math.Content.5.Nbt.A.2

What is \(\displaystyle 8\times10^5\) in standard form? 

Possible Answers:

\(\displaystyle 8\textup,000\)

\(\displaystyle 80\)

\(\displaystyle 800\)

\(\displaystyle 80\textup,000\)

\(\displaystyle 800\textup,000\)

Correct answer:

\(\displaystyle 800\textup,000\)

Explanation:

The power of \(\displaystyle 10\) tells us how to move our decimal. Because we have a positive \(\displaystyle 5\) power, we move our decimal over \(\displaystyle 5\) places to the right. 

\(\displaystyle 8.\rightarrow 800000.\)

Example Question #4 : Explain Patterns When Multiplying By A Power Of 10: Ccss.Math.Content.5.Nbt.A.2

What is \(\displaystyle 9\times10^5\) in standard form? 

Possible Answers:

\(\displaystyle 90\)

\(\displaystyle 900\)

\(\displaystyle 90\textup,000\)

\(\displaystyle 9\textup,000\)

\(\displaystyle 900\textup,000\)

Correct answer:

\(\displaystyle 900\textup,000\)

Explanation:

The power of \(\displaystyle 10\) tells us how to move our decimal. Because we have a positive \(\displaystyle 5\) power, we move our decimal over \(\displaystyle 5\) places to the right. 

\(\displaystyle 9.\rightarrow 900000.\)

Example Question #1 : Explain Patterns When Multiplying By A Power Of 10: Ccss.Math.Content.5.Nbt.A.2

What is \(\displaystyle 8\times10^4\) in standard form? 

Possible Answers:

\(\displaystyle 800\)

\(\displaystyle 8\)

\(\displaystyle 80\)

\(\displaystyle 80\textup,000\)

\(\displaystyle 8\textup,000\)

Correct answer:

\(\displaystyle 80\textup,000\)

Explanation:

The power of \(\displaystyle 10\) tells us how to move our decimal. Because we have a positive \(\displaystyle 4\) power, we move our decimal over \(\displaystyle 4\) places to the right. 

\(\displaystyle 8.\rightarrow 80000.\)

Example Question #4 : Explain Patterns When Multiplying By A Power Of 10: Ccss.Math.Content.5.Nbt.A.2

What is \(\displaystyle 7\times10^4\) in standard form? 

Possible Answers:

\(\displaystyle 700\)

\(\displaystyle 7\textup,000\)

\(\displaystyle 7\)

\(\displaystyle 70\textup,000\)

\(\displaystyle 70\)

Correct answer:

\(\displaystyle 70\textup,000\)

Explanation:

The power of \(\displaystyle 10\) tells us how to move our decimal. Because we have a positive \(\displaystyle 4\) power, we move our decimal over \(\displaystyle 4\) places to the right. 

\(\displaystyle 7.\rightarrow 70000.\)

Example Question #5 : Explain Patterns When Multiplying By A Power Of 10: Ccss.Math.Content.5.Nbt.A.2

What is \(\displaystyle 9\times10^2\) in standard form? 

Possible Answers:

\(\displaystyle 9\)

\(\displaystyle 900\)

\(\displaystyle 90\)

\(\displaystyle 90\textup,000\)

\(\displaystyle 900\textup,000\)

Correct answer:

\(\displaystyle 900\)

Explanation:

The power of \(\displaystyle 10\) tells us how to move our decimal. Because we have a positive \(\displaystyle 2\) power, we move our decimal over \(\displaystyle 2\) places to the right. 

\(\displaystyle 9.\rightarrow 900.\)

Learning Tools by Varsity Tutors