All MCAT Biology Resources
Example Questions
Example Question #14 : Genetics
A scientist has discovered a new species of flower in which purple coloration is dominant to white. He wishes to know the genotype of a specific purple flower. Which of the following crosses would give him a definitive answer for the purple flower's genotype?
Unknown purple x Homozygous purple
Unknown purple x White
None of these crosses would determine the unknown genotype
Unknown purple x Unknown purple
Unknown purple x White
To answer this question we need to set up punnett squares for each potential cross. The unknown purple flower can be represented as A_ because we know it must contain at least one dominant allele to show purple coloration.
An A_ x AA would yield only purple flowers, which would not be useful.
An A_ x A_ could yield either all purple offspring or a 3:1 purple to white ratio; however, this cross would not answer our question because we wouldn't know which unknown purple flower was homozygous and which was heterozygous if the first result is achieved.
The only option that gives a definitive result is A_ x aa. If the unknown is homozygous, all offspring will be purple; if it is heterozygous, we will see a 1:1 purple to white ratio.
Example Question #13 : Cell Biology, Molecular Biology, And Genetics
Pea plants have two independently assorted genes that code for seed shape (round or wrinkled) and seed color (yellow or green), respectively. A researcher crosses two pea plants and observes that all F1 offspring have the same phenotype: round shape and yellow seeds. He then performs a test cross with an F1 offspring and observes four different phenotypes in a 1:1:1:1 ratio. Based on this information the researcher concludes the genotypes of the parents.
If the researcher isolates one of the wrinkled yellow seeds from the F2 generation and test crosses it with another plant, what is the probability of getting a wrinkled green seed?
Let’s assign the letters A and B for the genes that code for seed shape and seed color, respectively. A dominant allele is assigned the capital letter and the recessive allele is assigned the lower case letter.
In order to produce the observed F2 generation, all F1 plants must be heterozygous for both traits. This means that the F1 generation has a genotype of AaBb and the test cross has a genotype of aabb. Remember that the test cross will always be against a homozygous recessive individual. The results of the F1 test cross would be:
F1: AaBb x aabb
F2: AaBb, Aabb, aaBb, aabb
If the yellow phenotype is dominant and the wrinkled phenotype is recessive, then our target F2 plant has a genotype of aaBb. Using this genotype in a test cross, we can find our answer.
F2: aaBb x aabb
Offspring: half aaBb (wrinkled/yellow) and half aabb (wrinkled/green)
The probability of a wrinkled green offspring is 0.5, or 50%.
Finding probabilities of an offspring from a complex cross (polyhybrid crosses) can also be done by multiplying the probability of each individual trait. In this case, the probability of wrinkled is 1 (100%) and the probability of green is 0.5 (50%), resulting in the 0.5 probability. If each gene independently assorts, then you can find individual probabilities of each trait in a genotype and multiply them together.
Example Question #8 : Mendel And Inheritance Patterns
Pea plants have two independently assorted genes that code for seed shape (round or wrinkled) and seed color (yellow or green), respectively. A researcher crosses two pea plants and observes that all F1 offspring have the same phenotype: round shape and yellow seeds. He then performs a test cross with an F1 offspring and observes four different phenotypes in a 1:1:1:1 ratio. Based on this information the researcher concludes the genotypes of the parents.
Which of the following is true regarding a test cross?
I. It is a tool used by researchers to determine the genotype of earlier generations
II. The traits of a test cross are homozygous dominant
III. Test cross can only be used for monohybrid and dihybrid crosses
II only
II and III
I and II
I only
I only
The main purpose of a test cross is to determine unknown genotypes of previous generations. A specimen with unknown genotype is crossed with a specimen of known genotype, and the phenotypes of the offspring are observed to determine the heritability ratios of the cross. Statement I is true.
When a researcher employs a test cross, he is crossing an unknown individual with a homozygous recessive individual, not homozygous dominant. This allows all traits from the unknown individual to be expressed in the offspring. If a homozygous dominant individual were used, then all offspring would show the dominant phenotypes and the cross would be useless. Statement II is false.
A test cross can be used for any cross; it doesn’t matter if it is monohybrid, dihybrid, or polyhybrid. If you can obtain an individual that is recessive for all the traits you are analyzing, then you can employ a test cross. Statement III is false.
Example Question #9 : Mendel And Inheritance Patterns
A woman is a carrier for a sex-linked disorder. She marries a man whose father had the disorder, and whose mother did not. The man is unaffected. If they have a child, what is the probability that the child is also a carrier?
25%
75%
100%
0%
50%
25%
In order for the woman to be a carrier, the disorder must be X-linked recessive, and the woman must be heterozygous for the allele. The information about the man's parents becomes irrelevant as soon as we know that he does not have the disorder. Males only carry one copy of the X-chromosome; thus, for the man to be unaffected, he must carry the dominant, unaffected allele. Now we know that the woman's genotype is and the man's is
, where
represented the affected allele. The Punnett square for this couple is drawn below.
Males cannot be carriers for X-linked traits, as they only carry one copy of the X-chromosome; thus, we are looking only at daughters (50%). Of the daughters, 50% will be heterozygous for the trait (). There is a one in four chance the child will be a female who is a carrier, or 25%.
Example Question #11 : Genetics
Red-green colorblindness is an X-linked recessive disorder. Jacob's paternal grandfather and father are both colorblind, but his mother has two normal alleles. What is the probability that Jacob is red-green colorblind?
0%
50%
33%
100%
None of these answers are correct
0%
To answer this question, you must have a basic knowledge of sex-linked disease genetics. Men are much more likely to suffer from X-linked disorders; unlike women, they have only one X chromosome, and therefore do not have a second copy that can compensate for the affected one. A man cannot, however, inherit a defective X chromosome from his father, because fathers pass on their Y chromosome to their sons. So, Jacob must inherit one of his mother's healthy X chromosomes, and there is no chance that he will be colorblind.
Example Question #12 : Mendel And Inheritance Patterns
Consider the pedigree of a recessive trait. Is the trait autosomal or sex-linked?
The mode of inheritance cannot be determined
Y-linked
X-linked
Autosomal
X-linked
This trait is X-linked, which can be determined by considering individual 4. This individual has a 50% chance of receiving an affected maternal chromosome (she is a carrier) and a 0% chance of receiving an affected paternal chromosome (he is unaffected), and yet he has the defect. We know that the son inherits the Y-chromosome from his father, and a singular X-chromosome from his mother; thus, we can assume he inherits the affected chromosome from his mother. He has no dominant X-chromosome to veil the trail, thus he expresses the trait despite it being recessive. This pattern indicates that the trait resides on the X-chromosome.
Example Question #21 : Genetics
Consider the pedigree. What is the probability of individual 22 being affected?
Individual 22 is male, and the trait it X-linked recessive. We know he will inherit the Y-chromosome from the unknown father, and a singular X-chromosome from the affected mother. Because the mother is affected, we know she must have two affected X-chromosomes. No matter which chromosome is passed to individual 22, he will inherit the trait.
Example Question #11 : Mendel And Inheritance Patterns
Consider the pedigree. What is the probabilty of individual 18 being affected?
We can tell from the pedigree that the trait is X-linked recessive. Individual 18 is female; her mother is a carrier, and her father is affected. She will receive one affected paternal X-chromosome (100%) and has a 50% chance of received an affected maternal copy. The probability of her being affected is given by the calculation.
Example Question #12 : Mendel And Inheritance Patterns
Consider the pedigree. What is the probability of individaul 18 being a carrier?
We can tell from the pedigree that the trait is X-linked recessive. Individual 18 is female; her mother is a carrier, and her father is affected. She will receive one affected paternal X-chromosome (100%) and has a 50% chance of received an affected maternal copy. The probability of her being a carrier is given by the calculation.
Example Question #14 : Mendel And Inheritance Patterns
Consider the pedigree. What is the probability of individual 18 being neither affected nor a carrier?
We can tell from the pedigree that the trait is X-linked recessive. Individual 18 is female; her mother is a carrier, and her father is affected. She will receive one affected paternal X-chromosome (100%) and has a 50% chance of received an affected maternal copy. Because we know there is a 100% probability of her receiving at least one affected chromosome (from the father), there is a 0% chance that she will be unaffected. She must be either affected or a carrier.
All MCAT Biology Resources
![Learning Tools by Varsity Tutors](https://vt-vtwa-app-assets.varsitytutors.com/assets/problems/og_image_practice_problems-9cd7cd1b01009043c4576617bc620d0d5f9d58294f59b6d6556fd8365f7440cf.jpg)